Optimal Forest Rotation When Stumpage Prices

Follow a Diffusion Process

Thomas A, Thomson

ABSTRACT. A key assumption in the Faust-
mann rule for financial maturiry is that stump-
age prices are constant over time. Timber price
series, however, exhibit wide fluctuations over
time which this paper models as a lognormal
diffusion process. Comparing the diffusion re-
sults modeled here to the fixed-price Faustmann
results show: (1) the prescribed rotation length
is generally longer; (2) computed stand values
are higher using the diffusion model with the
greatest divergence occurring when a stand is
about the midpoint of a rotation; (3) as the
stumpage price volatility increases, the gain in
computed NPV increases, though in a nonlinear
fashion.

I. INTRODUCTION

Classic questions in forest management
are when to harvest a stand that is currently
immature, and whether to regenerate a new
timber stand after harvest. Faustmann
(1849) presented what is now widely ac-
cepted as the correct methodology for de-
termining timber stand financial maturity
when stumpage prices, forest management
costs, and timber growth remain constant
over time. Forest mensuration studies have
determined forest growth over time. It
seems reasonable to assume that forest
management costs do not vary much over
time. Stumpage prices, however, exhibit
large variation from year to year; thus, an
important consideration in studying finan-
cial maturity is how managers should adapt
their timber harvests in response to chang-
ing stumpage prices. Recent articles in this
Journal have addressed the non-constant
stumpage price consideration. McConnell,
Daberkow, and Hardie (1983) note that
both prices and forest management costs
fluctuate which leads to changes in optimal
rotation lengths and possibly the conver-
sion of timber stands into agricultural uses.
Newman, Gilbert, and Hyde (1985) find
that exponentially increasing prices de-

crease rotation length until an equilibrium
rotation length is achieved. Sandhu and
Phillips (1991) add that demand induced
price changes may occur at the beginning
of a forest rotation resulting in variable ro-
tation lengths. These papers assume that
timber price changes are deterministic.
Timber price series, however, exhibit con-
tinual stochastic changes rather than dis-
crete predictable changes; thus, a more
appropriate model should recognize this
stochastic nature. Some recent work as-
sumes that stumpage prices can be modeled
as annual independent draws from a known
distribution (Brazee and Mendelsohn 1988;
Lohmander 1988; Haight 1990, 1991).
Washburn and Binkley (1990a), however,
note that the independent draw assumption
is inconsistent with informationally effi-
cient stumpage markets and use time series
tests to reject the validity of such models.
Teeter and Caulfield (1991) construct a
Markov model of stumpage prices assumed
to follow an autoregressive process (AR(1))
to assess optimal thinning regimes. In their
study the rotation age is fixed but they note
their technique could be used to study the
optimal rotation age. This paper assumes
that stumpage prices follow a lognormal dif-
fusion process and that trees grow ac-
cording to well-established yield tables or
growth models. The numerical solutions
are computed using the familiar technique
of dynamic programming.
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The typically maintained assumption in
financial economics is that stock prices fol-
low a lognormal diffusion, a process popu-
larized as the underpinning of the Black and
Scholes (1973) option pricing formula. Such
a process is consistent with both informa-
tionally efficient markets and fluctuating
prices. This paper models the variable
stumpage prices using a discrete form of a
diffusion process. The stock price diffusion
process underlying the Black-Scholes
model is:

dP = pPdi + oPd:z [
where:

stock price,

time,

drift rate in stock price,

volatility of stock prices (instanta-
neous standard deviation),

dz = the increment of a Wiener process
(or Brownian motion).'

| [ 1 I |
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When this diffusion process is melded with
several other financial market assumptions,
Black and Scholes (1973) solve the closed
form solution to the option pricing problem.
If the forestry problem could be put in a
similar framework, the rotation length
problem could be solved using this closed
form solution. Thomson (1991) shows that
the forest rotation problem cannot be
solved using the Black-Scholes solution be-
cause not all of the requisite inputs are
available for a corresponding timber valua-
tion problem.

Morck, Schwartz, and Stangeland
(1989), in an extension to the natural re-
source valuation approach of Brennan and
Schwartz (1985), apply diffusion models to
valuing a mature forest resource that must
be harvested during the next ten years.
They assume that stumpage prices follow
equation [I] and that growth in inventory
follows Brownian motion with drift. They
derive the resulting nonlinear partial differ-
ential equation that they solve numerically
to value the forest stand. Their solution val-
ues the optimal depletion path for a mature
forest given that it must be harvested dur-
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ing the terms of the lease or abandoned.
They note, “*It also would be of interest to
extend the problem over a much longer
time horizon in order to consider issues
such as optimal reforestation policies.”
Their model is not appropriate for such ex-
tensions as the long time-horizon problem
is not easily handled using their numerical
evaluation technique, and more important,
tree growth does not follow Brownian mo-
tion with drift.

Clarke and Reed (1989) and Reed and
Clarke (1990) make a more realistic sto-
chastic growth assumption by making the
stochastic growth a function of age or size
(rather than simply a Brownian motion with
constant drift) and use a lognormal diffu-
sion for stumpage prices. They do not con-
sider any costs of forest management:
hence, they show that the Faustmann re-
sults are appropriate.

II. THE BINOMIAL OPTION
PRICING MODEL

When the financial market assumptions
required for the Black-Scholes solution are
not present, it is common to use numerical
methods to solve option valuation prob-
lems. Cox, Ross, and Rubinstein (1979) and
Rendleman and Bartter (1979) indepen-
dently developed a two-state option pricing
model, that is commonly called the bino-
mial option pricing model. It is pedagogi-
cally instructive and is a popular tool for
the numerical analysis of option values. In
the two-state option pricing model, the con-
tinuous time stochastic process described
in equation [1] is replaced with a discrete
state, up or down price movement, The bi-
nomial option pricing model is described as
follows. Suppose the stock price starts at
P. In the next period it will either rise to
u * P (up state) or fall to 4 * P (down state).

'The discrete version of the model. dP = odz, is
commonly called the random walk model. When a drift
term of pdr is added it is called a random walk with
drift. Dividing both sides of equation [1] by P shows
that the change in price divided by the current price
follows a random walk with drift. It is also called geo-
metric Brownian motion.
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The probability of an up move is 7, thus,
the probability of a down move is 1 = .
The following model parameters will con-
verge to equation [1] as At — 0:2

u = explo VA (2]
|
d= = (3]
explpdr) — d
= T i [4]

From this basic structure, a tree can be
constructed which shows a time path of
prices and their probabilities.

The standard discounted value maximi-
zation criterion asks whether the value
from immediate harvest exceeds the value
of the stand discounted one period, and
thus computes the value of a timber stand
as:

l""ll-F- Q} o H{Pr.lgu + V[Pi.i' Qr.ﬂ}'
V[PHIJ-'QHLJHJ .
1+r } 5]
where:

VIP, Q] = the value of the forest stand
which depends on the stumpage price
and volume.

t = calendar time in periods, t = 0, 1, 2
. Fom AL

J = age of the timber stand in periods, j =
| T W B gkl X

P,; = stumpage price i realized at time .

Q,; = stumpage volume in period ¢ for a
stand of age j.

VIP, ;. O, 0l = the land value (LV) in period
t for realized stumpage price i, prior to
establishing a tree crop (i.e., Q,, = 0).
When forest management will be prac-
tised this is the discounted value of the
costs and revenues from managing tim-
ber stands ad infinitum. Alternatively,
the LV may be what someone would pay
for the bare land to employ it in some
other use.

VIP,. 1 Q41411 = the value of the timber
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stand one period from now. This may

be either its harvest plus land value in

t + 1 or its discounted future value.

C = per period forest management costs.
r = appropriate one-period discount rate.
The term P, ;Q,  is the harvest value of
the standing inventory at time ¢ for a timber
stand that is age j, and V[P, Q,,] is the
value of bare land after the harvest. When
added together they comprise the total
stand value received if the stand is har-
vested today. This value is compared to the
discounted value that will be received one
period from now if harvest is delayed. To
hold the timber stand another period re-
quires the expenditure of a cost for land
management, protection, and property
taxes which must be subtracted from the
next period value. If stumpage prices, man-
agement costs, and growth rates are con-
stant over time, solving equation [5] will
provide the Faustmann results, and VIP, .
Q,,] is the Faustmann land expectation
valuc (LEV).

If the stumpage price is stochastic, one
can only exactly determine the current har-
vest value of the stand as today’s stumpage
price and volume is known. V[P, Q]
and V[P, , Q,+|J+,1 depend on the real-
ization of uncertain prices through time. At
any point in time ¢, the stochastic process
can be described by two states, the current
stumpage price (P, ;) and the current stand
volume (Q, ;). The binomial option pricing
model ﬁpem'hes the price process; thus, the
current harvest value and expected future
values can be explicitly determined at dis-
crete nodes as long as the growth of stands
is known. This paper models the two states
separately at each stage using a dynamic
programming approach proposed by Amin
(1991). The price state follows the binomial
options pricing model and the growth state

“The model parameters deseribed below apply for
convergence lo the Black-Scholes lognormal price
diffusion process of equation [1]. Nelson and Ra-
maswamy (1990) show that the two-state modeling
approach can also be used for alternative diffusion
processes by choosing an appropriate set of model pa
rameters.
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follows a typical timber yield function. This
approach endogenously computes the LV
for each price state which is then used in
making both the harvest and regeneration
decision.

In this dynamic programming formula-
tion, one evaluates the harvest decision for
the current node by noting that in the next
period the stumpage price will proceed to
one of two nodes (up state or down state)
and the trees will grow by a one-period in-
crement. For each of the two next period
price nodes (for a given volume) the deci-
sion maker must evaluate whether the
stand is financially mature (in which case it
will be harvested) or whether to let the tree
growth continue. The probability of reach-
ing each of the two next period price nodes
1s wand | — . The probability of reaching
the next period volume node is 1.0, for at
the decision maker’'s discretion the stand
either grows for one year or is harvested.
The value of reaching either of the next pe-
riod nodes will be the greater of the harvest
plus land value for that node, or the dis-
counted value of all future harvests at that
node. The next period managerial action
(harvest or wait) with the highest value will
be chosen for that period and its value dis-
counted one period to determine if the pres-
ent managerial action of harvest exceeds
the value of waiting. When the value of im-
mediate harvest exceeds the discounted
value of waiting, the stand should be har-
vested, and a new stand established if the
LV at that price node indicates forest man-
agement is the best land use. If prices are
too low to justify the establishment of a
new stand, then the forestry enterprise will
be abandoned. For risk neutral valuation,
the following equation states the appro-
priate recursive financial maturity condi-
tion at any price and quantity node in the
binomial tree:

ViP. Q) =
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state has occurred. This value can be ex-
pressed as:

Max {Harvest,, Wair }
where:

Harvest, = u» P, ,.Q,. ., + Vlu=*P,,
Q,.1.0] which is the harvest plus land
value after an up state if the decision to
harvest is chosen. (Note that the price
the next period equals u * P, if the up
state occurs. The j subscript on Q is in-
creased by 1 as the stand volume has in-
creased by one period of growth.)

Wait, = stand value in the next period if
an up state occurs but the decision to not
harvest is chosen. 1t is the discounted ex-
pected value of the stand one more pe-
riod in the future (+ + 2).

Vid * P, ;, @,41,+1] = the value of a stand
one year from now given that the down
state has occurred. Its value is computed
in a manner analogous to that for the up
state.

Other variables are as noted earlier. If at
any node, the value of the stand under the
harvest decision exceeds the value of let-
ting the growth continue, the stand should
be harvested and a new stand regenerated if
its land value is positive. If not, the forestry
enterprise should be abandoned at this
time.

The LV’'s used in the model are com-
puted as follows, If the stand is harvested
this period, it will be replaced by a one-
period-old stand the next period unless the
land is converted to another use or aban-
doned. If the value of having a one-period-
old stand in the next period exceeds its
regeneration costs plus one period of
management costs, the timber LV is the
value of a one-period-old forest minus the

M’ax{PF.I Ql.: + V[Fr.l" QJ.[‘I]*

where Viu = P, ,, Q,., ;.| is the value of a
stand one year from now given that the up

wrViue P, @r-rl._ull + (1 = ) » V[d‘Pr.f-QH-i,HI] = C] (6]

1 +r

management costs discounted one period,
less the immediate regeneration cost. If this
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computation yields a lower value than that
of an alternative use, then the value of the
alternative use is the LV which signals a
conversion from forestry. If no other use is
possible for this forest stand the alternative
use value is zero so choosing the alternative
land use in this case means abandoning the
forestry enterprise and the land. The com-
puted results, therefore, include the option
value of abandoning the land or converting
10 an alternate use if the stumpage price
is too low to justify sustainable forestry.’
Formally the LV is computed as:

™ "II“"PLr'. Qr‘_h!] + !’i = ﬂ'] ¥ Vld*Prd‘"Qf"’h]] = C
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volume, plus the value of the alternative
use, for each price and volume node:

VEPT.l'QT.}l ™ PT.:‘QT,J’ + Alt

I= 13,8, 08 J=1,2.3,....7
where / is the total number of price nodes
(equals 2T — 1) and J is the maximum age
stand (in periods) that will be allowed in the
model. J should be chosen such that the
computed results are invariant with J un-
less there is some alternate consideration

VIPL." Qr.ﬂ'] . Max{

where R is the regeneration cost and Alr
is the value of the land if converted to an
alternative use. Alr = 0 if no alternative
land use has a positive value.

Equations [6] and [7] show that the LV
and the expected value of delaying harvest
depend on the next period values; thus, fu-
ture periods must first be evaluated. Conse-
quently, the dynamic nature of the problem
is appropriately solved by backward re-
cursion. Furthermore, the problem is an in-
finite horizon problem. To solve we replace
the infinite horizon problem with a finite ho-
rizon problem so that t = 1, 2,3, ... T,
where T is the final stage of the problem.
Because no value will be gained by waiting
an additional period beyond T, the optimal
decision at time T is to harvest all stands,
regardless of price and age and to sell the
land for the alternative use value. For the
results presented below, time horizons
were chosen to ensure that increasing T did
not affect the solution by more than $0.005/
acre. The recursion proceeds backwards
from stage T and evaluates at each price
and volume node whether the current har-
vest value of a stand plus the LV exceeds
the discounted expected value of the next
period’s best decision and thus the re-
cursion continues until the present.

The boundary condition is the value of
the forest in the final stage, that is, the
product of the stumpage price and timber

1 +r

- R,Ah‘} 17

such as maximum tree size that can be pro-
cessed which forces an upper bound on J.

The backward recursion proceeds as fol-
lows. Equation [8] is used to compute the
harvest values for all P, and Q,at ¢+ = T.
Then equation [6] is evaluated for all P, and
(), values at stage t = T — 1. The choice
of the highest valued strategy at this stage
embeds the optimal decisions of harvest or
wait, and, if the harvest option is chosen,
regenerate or convert. If the stand is cur-
rently age J, then the decision to harvest
must be chosen. The recursion continues
via equation [6] until ¢ = 0. At r = 0 there
is only one price node (the starting price)
and J quantity nodes. Each node has a
value, V[P;, ©Q;], which is the net present
value (NPV) otj the timber plus land for the
current price computed using the binomial
diffusion approximation. The same dy-
namic algorithm is used to compute the
Faustmann values except that the stumpage
price remains fixed over time. The differ-
ences in computed NPV between the two

*The conversion resulls embedded in this modeling
approach are very different than that taken by Zinkhan
(1991). Zinkhan assumes that the timber rotation
length is given, but that the alternative use value is
uncertain, He assumes conversion can take place only
on a specified date. This paper assumes the conversion
value is known, but the timber values are stochastic
and conversion can take place at any date depending
on the timber price realized al that date.
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models are thus due to the volatile price
assumption.

A FORTRAN program was written to
solve the model described in equations
|6]-[8]. The model has been solved using
IBM compatible microcomputers running
MS-DOS. The problem size (i.e., number
of time periods and number points on the
volume function) is limited by the memory
available using DOS; thus, the program
truncates the binomial price process after
125 stages. Extensive testing has demon-
strated that the numerical solutions in the
presented results remain accurate to $0.01/
acre. The model computes the t = 0 values,
VIPy, @;1, which are the NPV's per acre
for a stand of age j, given the current price
is Py, and notes if the stand is financially
mature (i.e., harvest value exceeds wait
value) given the current stumpage price and
age. The dynamic program also computes
Faustmann harvest age and NPV's. The
difference in NPV between the diffusion
model and the Faustmann model is com-
puted and recorded.

An important managerial choice is the
timing of the harvest. The Faustmann ap-
proach prescribes a single harvest age for a
fixed price scenario. The binomial diffusion
model evaluates the harvest decision based
on the node that is attained rather than
stand age that has been reached. This
allows managers to be flexible in their
choices of both when to harvest the existing
stand and whether to establish another
stand. For the current stumpage price, the
maodel notes the age at which financial ma-
turity is reached. If the stand age is greater
than the age of maturity, it should be har-
vested; otherwise, it should be left to grow.
One period from now the model would be
rerun with the newly observed stumpage
price and an updated evaluation of financial
maturity made. This process would con-
tinue until it was optimal to harvest the
stand. At that point a second managerial
decision would be made, that of whether to
continue the forestry enterprise by regener-
ating a new stand. If the timber LV for the
stumpage price realized at that date is
greater than the land value in an alternative
use, then regeneration should take place.
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Otherwise, the forestry enterprise should
be converted to the alternative use (or
abandoned if the alternative use is aban-
donment). The two managerial decisions,
when to harvest the current stand and
whether to regenerate a new stand, are thus
explicitly determined using the model.

An increase in stand NPV is typically
computed by the diffusion model. This in-
crease is the value of flexibility in decision
making as the Faustmann computed value
is correct when no flexibility in decision
making is allowed. In other words, this in-
crease in value is the value of the option
to modify one’s harvest and regeneration
decisions as the stumpage price path un-
folds. Two options are thus recognized; the
option to vary the harvest age and the op-
tion to abandon forestry. The model de-
scribed above solves the value of the com-
bined options. By modifying equation [7] to
choose the discounted value of a one-year-
old stand even when it has negative value,
one disallows the abandonment option;
thus, the option value computed is the
value of harvest age flexibility. The diffu-
sion and Faustmann models will compute
the same NPV only when there is no flexi-
bility in the managerial decision.' This oc-
curs for mature stands when stumpage
price is so low that it is optimal (by either
model) to harvest the current stand and
then abandon forestry.

Ill. EMPIRICAL TRENDS IN
HISTORICAL DOUGLAS FIR
STUMPAGE PRICES

The diffusion model requires as an input
the drift and volatility of prices. National
Forest timber sale stumpage price data was
compiled for the period 1926-86. Data for
1926-57 are from Potter and Christie
(1962), for 1950-79 from USDA Forest Ser-

‘Because the Clarke and Reed (1989) model does
not include costs, their optimal rotation age is the
Faustmann age: thus, no option values are present and
their computed values are the same as the Faustmann
values (for the particular stumpage price under consid-
eration). If a 0 regencration and management cost s
used in the dynamic programming model of this paper,
the Faustmann results are obtained.
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vice (1982), and for 1959-86 from an annual
series of stumpage prices compiled by the
USDA Forest Service. It was confirmed
they represent a single series as the over-
lapping values are the same among sources.
These prices were deflated to a constant
base yvear and maximum likelihood esti-
mates of the drift and volatility were com-
puted.® The deflated prices were then de-
trended by the computed drift rate and the
logarithms of these deflated, detrended
prices were computed and subjected to a
Lilliefors test which could not reject a null
hypothesis of normality at the usual levels
of statistical significance (p value = 0.668).
Thus, a hypothesis of lognormality of
stumpage prices cannot be rejected so use
of the price generating process of equation
[1] appears reasonable. Annual volatility
(o) was estimated at 0.338,

IV. AN EXAMPLE

The dynamic programming model re-
quires the following parameters: beginning
stumpage price, timber yield over time, per
period forest management costs, risk-free
discount rate, the value of the alternative
land use, stumpage price volatility (o), drift
(w), and step size (Ar). This analysis is done
in real terms thus costs are assumed con-
stant over time and stumpage prices are
real prices over time. Consider a Site II
Douglas-fir stand that will be harvested
when financially mature. The initial stump-
age price is $120/1,000 board feet (Mbf)
with p = 0,0 = 0.30, Ar = 1 year® C =
$4/acre/year, R = $250/acre, and Alt = 0.
Yield was simulated using the SPS model
(Arney 1985) and the simulated results were
then fitted using nonlinear regression to the
functional form of Payandeh (1973) which
provided the yield equation:

Vol, = exp(12.05 — 68.88/a) 91
where Vol, is timber yield in Mbf/acre at

.

Table 1, Panel A, shows a table of
NPV's computed using the diffusion model
for several current stumpage prices and for
several of the stand ages that were evalu-
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ated. Also noted is the age when the stand
becomes financially mature for that stump-
age price. In other words, an asterisk indi-
cates that for a stand of the specified age
and stumpage price, the stand value is
higher if one harvests immediately rather
than waiting. Following in Panel B is the
gain in NPV, that is, the NPV computed
using the diffusion model minus the NPV
computed by the Faustmann model. Also
noted in Panel B is the age at which the
stand becomes Faustmann mature for the
given stumpage price.

Harvesting the stand at a relatively
young age may be optimal for one of two
reasons. Either the price is so high that the
opportunity cost of forgoing the next rota-
tion is high or the price is so low that it
makes sense to abandon the forestry enter-
prise early rather than to continue invest-
ing the annual management fees. Figure 1
shows this relationship by plotting the opti-
mal rotation age as a function of the stump-
age price observed at that future time.’
Both the Faustmann and diffusion models
prescribe a longer rotation age at a rela-

‘Reed and Clarke (1990) note that the ML esti-
mates for the drift and volatility are the mean and stan-
dard deviation of the time seriesIn(P, ,/P,). Washburn
and Binkley (1990b) show that the true volatility will
be underestimated using this approach as the historical
stumpage prices series are period average prices.

*To get a more precise evaluation of the diffusion
process requires using a smaller A7. The model was
rerun using At = 0.5 years and At = 0.25 years. The
values reported below typically increase by $0.22 and
$0.25/acre, respectively; thus, it appears reasonable
to report results only for Ar = 1 year.

"In the stochastic process literature such a figure
is often called the optimal stopping boundary. The re-
sults shown in Figure 1 were developed with At = 0.5
year to more accurately represent the age of financial
maturity. The figure shows the age and price states
where harvest is the optimal decision. It does not
show, for example. that with today's stumpage price
of $120, a stand planted today, should be harvested at
age 39. The optimal harvest age for a stand planted
today will depend on the price path that occurs over
time, i.e., when the diffusion path hits the stopping
boundary shown. This figure does show, however, if
you have a 39-year-old (or older) stand today and the
current price is $120, you should harvest it. If vou
have a 38-year-old (or younger) stand, you should
wait. Whether you will harvest the 38-vear-old stand
one year from now will depend on the price next
period.
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TABLE 1
DirFusion MopeL NPV anp INcrease in NPV as a FuncTion
oF INITIAL STUMPAGE PRICE AND STAND AGE
Current Stumpage Price (5/Mbf)

Age 240.00 180.00 120.00 60,00 45,00 30.00
Panel A: Diffusion Model NPV ($/ac) by Stumpage Price and Stand Age
LV 1,571.56 1,088 44 607.50 131.98 15.17 0.00

1 1,897.56 1,395.04 894 .98 400.41 278.94 159.72

2 1.976.46 1.453.94 9331.81 419.58 293.22 169.17
37 7,953.72* 5.877.13 3.812.51 1.789.24 1,304.61 838.18
I8 B.274.17* 6.115.39* 3.960.17 1.856.03 1,352.35 869.90
19 B.593.04* 6,354.55° 4,118.24* 1,923.27 1,401.71 902.78
40 8.910.01* 6,592.28* 4,276,73* 1.993.13 1,451.50 035.82
41 9,224, 79* 6,828, 16* 4,434, 12¢ 2.064.13 1.502.09 970.05
42 9.537.13* 7.062.62* 4,590.29* 2,134.74 1.553.12 1,004 .51
43 0.846.80* T7.294.87* 4.745.12* 2,205.95 1.604.65 1.039.28
44 10,153.62* 7.524.98* 4,898 53* 2.277.504 1,657.42 1,074.07
45 10,457.42* 7.752.84*% 5.050.43* 2,353.45* 1. 709.87 1.110.73*
55 13,308, 78* 9.891.35* 6,476.11% 1,066, 29* 221648 1.467.15*
56 13,574.22* 10,0090, 44 6,608.83* 3,132.65" 2.265.67* 1,500.33
57 13.836.04* 10,286.80* 6,739.74*% 3,198 10 2.314.76" 1,533.06*
Panel B: Increase in NPV (§/ac) by Stumpage Price and Stand Age
LEV 45.15 49,31 59.90 65.09 57.75 0.00

1 46.10 50.35 57.08 6684 59.21 39.35

2 46.94 51.46 58.37 68.67 60.71 1999
37 45,05 48.21 63.32 109.91 92.48 33.80
I8 45.15% 49,311 s7.011 105.53 §7.75 2034
19 45.15% 49317 55651 98.74 82.52 24,60
40 45,15t 49311 55.65% 91.631 75.54% 18.31%
41 45.15% 49311 55.65% 83,931 67.10% 13.40%
42 45.15% 49317 55.65% T6.451 59,58t BRI+
43 45.15¢ 4931t 55.65t T0.25% 53.041 4 BR+
L= 45,15 49.311 55.65% 65097 48281 1.31%
45 45.15% 49.31% 55.65% 65091 43,71 Do+
55 45.15¢ 49311 55.65% 65091 15.76%1 0D
56 45.15¢ 49311 55.65% 65.091 15.17¢ 00
57 45.15% 49.31F 55.65% 65091 1517+ 0ot

Nove: Model parameters: Drift = 0.000, Regeneration Cost = $5250/ac, Risk Free Interest Rate = 0.04, Volatility = 0.30,

Value of Alternative Use = 0, Annual Costs = $4/ac/yr, Step Size = | year,

*Indicates stand is Anancially matire.
tIndicates stand is Faustmann mature.

tively moderate price. For very low prices,
the Faustmann rotation is somewhat
shorter than the diffusion model rotation.
For stumpage prices above $130/Mbf, the
rotation length prescribed by either model
is about the same." A large difference in
prescribed rotation length occurs if stump-
age prices are about $45/Mbf. In this range,
the rotation length prescribed by the dif-
fusion approach is 65 years whereas the
Faustmann rotation is 40. At first inclina-

tion this result suggests that the optimal
harvest age may be quite different between
the models. The probability of attaining a
65-year harvest, however, is near zero as

* As noted earlier, Reed and Clarke (1990) show the
diffusion model rotation is the same as the Faustmann
model when there are no costs; a result also noted in
Newman el al. (1985). Figure | shows that when tim-
ber prices are high enough, costs do not significantly
affect the harvest decision.
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prices are volatile. Time appears on the
vertical axis, so one can think of a growing
tree as proceeding vertically on the figure.
The price keeps changing as the stand
grows. When this diffusion hits the bound-
ary (a price and age point) shown on Figure
1, the stand should be harvested. It is very
unlikely with a stochastic stumpage price
diffusion to not hit the boundary before age
65, thus it is likely that the realized rotation
age will not vary greatly between models.?
The diffusion model specifies growing the
stand somewhat longer unless the stumpage
price is greater than $130/Mbf near the time
of financial maturity. The expected rotation
age, therefore, will be somewhat longer.
The difference in NPV between the two
models, which measures the value of mana-
gerial flexibility, varies by stand age (Figure
2). For a financially mature stand, the gain
in NPV is the gain in LV as the current
stand should be harvested and replaced
with a new stand. The greatest divergence
in value is for a stand near the middle of a
rotation. This gain in value is decomposed
into its two components—the value of har-
vest age flexibility and the value of aban-
donment of forestry if stumpage price is too

low when the stand is harvested. The lower
line on Figure 2 is the value of rotation age
flexibility and the line above it is the value
of forestry abandonment if stumpage prices
are too low after harvest.

It is well known that the value of an op-
tion increases as the price volatility of the
underlying security increases. Of interest to
forest decision makers is the magnitude of
the change in the timber stand NPV as the
stumpage price volatility changes. The base
case model was run with a series of stump-
age price volatilities. Figure 3 demon-
strates, for bare land and for a 20-year-old
stand, the increase in NPV as the volatility
of stumpage prices increases. This result
1s nonlinear. For a small stumpage price
volatility, there is a small increase in NPV
but the rate of increase in NPV becomes
more pronounced as a volatility of 0.2 is
achieved. Beyond a volatility of 0.6 the rate
at which NPV increases fails. Because the

*A stochastic simulation of a discrete form of equa-
tion [1] using monthly price changes showed that for
a slarting price of $40, the probability of the price
remaining in the interval [30, 50] over a five-year (60-
month) period is 0.00328,
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historically estimated volatility is about 0.3,
the gain in NPV near this range seems most
relevant.

The diffusion model allows the evalua-
tion of both how the current stumpage price
affects stand value, and how it affects the
computed difference in stand value be-
tween the Faustmann and the diffusion
models. Such a comparison can be made
for any age stand, but for illustration will
be made for a stand of age zero (i.e., the
difference in LV) and age 20 (near mid-
rotation). A series of model runs was made
at various initial prices with ¢ = 0.30 and
the difference in value between the diffu-
sion and Faustmann solutions are plotted
on Figure 4. At very low stumpage prices,
there is no difference in LV as it is optimal
in either model to abandon forestry; thus,
the computed LV is zero. As the stumpage
price rises, a price region begins where the
LV computed using the diffusion model is
positive, but Faustmann LEV is zero. This
disparity occurs because the diffusion
model evaluates price states where forestry
is a good investment, in addition to states
where forestry is a poor investment. The
Faustmann approach, however, evaluates a

constant price state where forestry is a poor
investment. The stumpage price for which
the Faustmann model is indifferent be-
tween continued forestry and abandonment
(i.e., stumpage price = $51.44 and Faust-
mann LEV = $0.01/acre) is where the dif-
ference in computed LV between the two
models is the highest (illustrated by the
peak shown in Figure 4). For stumpage
prices above this level, the gain observed
using the diffusion approach declines. The
results for an age 20 stand follow a similar
trend, that is, the difference in value peaks
at the stumpage price for which the Faust-
mann calculation shows indifference be-
tween continuing the forest enterprise or
abandoning it. For stumpage prices below
this point, the difference in computed
NPV’s remains strictly positive. The gain
in value for an age 20 stand is always
higher.

¥. COMPARISONS TO
OTHER STUDIES

Newman et al. (1985) show that when
timber prices are increasing exponentially
in a deterministic fashion, the rotation
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UsiNG THE Base Case ASSUMPTIONS, A

19 PER ANNUM STOCHASTIC PRicE

DriFr (p = 0.01), AND AN ALTERNATIVE Use LAND VaALUE oF $300/Acre

length will be longer than when no price
increase is present, but it declines over time
to the zero cost rotation length. F igure 5
shows the diffusion model optimal harvest
boundary with and without the presence
of an exponential price trend (k= 0.01).
The price trend shifts the optimal harvest
boundary upwards and to the left. The rota-
tion length in general will be longer with
the exponential price trend, but there is a
region where the rotation length may be
shorter than when no price trend is present.

Zinkhan (1991) notes the importance of
the timber land-use conversion option. Fig-
ure 5 also shows how the optimal harvest
boundary changes in response to an alter-
nate land-use value of $300 per acre. For
high stumpage prices there is little change
(optimal rotation is slightly longer) as the
probability of remaining in forest manage-
ment is high. For low stumpage prices, har-
vests will take place sooner to convert to
the better use earlier. Rotation length may
either be longer or shorter when the con-
version option exists and will depend on
the stumpage prices realized over time. By
varying the value of the alternative use one
may compute the LV of the forest land with

allowing for conversion of land use when
the stumpage price is too low relative to the
opportunity the alternative use provided.
Figure 6 shows that as the value of the
alternative use increases, the LV of land
currently slated for timber production
increases—recognizing the future potential
for land-use conversion.

V1. SUMMARY

This paper has shown how the price dif-
fusion model commonly used in financial
economics can be applied to the study of
financial maturity of timber stands. The dif-
fusion model allows flexibility in response
to an evolving stumpage price for two man-
agerial decisions; choice of rotation age and
whether to abandon forestry after the cur-
rent stand is harvested. Stand NPV com-
puted using the diffusion model is generally
higher than the Faustmann NPV as it vai-
ues the future flexibility of forest manage-
ment decisions. The example showed that
rotation lengths are longer except at high
prices where they are the same as the
Faustmann rotation. At high stumpage
prices, forest management costs are rela-
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tively unimportant as forestry is expected
to be a good investment; thus, it is not sur-
prising that the chosen rotation is similar
to the Faustmann rotation. The increase in
computed stand values reaches a maximum
for stands in the mid-rotation range. As
stumpage price volatility increases. so does
the gain from managerial flexibility as the
likelihood of both better and poorer price
states is increased. In the poorer states, the
land can be abandoned (or converted to a
higher value use) so there is a smaller loss
on the down side than there is gain in the
upside resulting in an increasing stand
value as volatility increases. The value of
managerial flexibility was also shown to be
a function of the current stumpage price.
The gain in NPV is highest when stumpage
prices are so low that the Faustmann LEV
is only slightly positive. At this price, the
Faustmann model values forestry at a mod-
estly profitable state whereas the diffusion
model considers the upside potential of
higher prices along with the option to aban-
don forestry if the downside is realized.
When stumpage prices are increasing, rota-
tion lengths will generally be longer though
the difference depends on the currently re-
alized stumpage prices. As the value of an
alternative land use increases, rotations
will be shorter for low price states so that
the more profitable alternative land use can
be deployed and longer for moderate or
high price states.
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