Time Value of Money (TVM)
Discounted Cash Flow (DCF)

\[V_{t+1} = V_t + V_t \left(\frac{1}{1 + i_{t+1}} \right) \]

This equation links value between periods where:

- \(V_t \): Value at time \(t \)
- \(V_{t+1} \): Value at time \(t+1 \)
- \(i_{t+1} \): Interest rate earned over the \(t+1 \) period

\[t \quad \quad t+1 \quad t+2 \]

\[V_t \quad \quad i_{t+1} \quad V_{t+1} \]

By analogy, we can also write:

\[V_{t+2} = V_{t+1} + V_{t+1} \left(\frac{1}{1 + i_{t+2}} \right) \]
By algebra, I can also write

\[V_{t+2} = V_{t+1} (1 + i_{t+2}) \]

Also note that \(V_{t+1} = V_t (1 + i_{t+1}) \)

So I can write

\[V_{t+2} = V_t (1 + i_{t+1})(1 + i_{t+2}) \]

Let \(t = 2000 \) (i.e. your year 2000)

Then

\[V_{2002} = V_{2000} (1 + i_{2001})(1 + i_{2002}) \]

You take out a loan for \$100,000
that charges 1% the first month
and 0.5% the second month.
What will your balance be, assuming
you make no payments (after 2 months)
If we allow this process to continue for \(N \) periods we can write

\[
V_{t+N} = V_t \left(1+i_{t+1} \right) \left(1+i_{t+2} \right) \ldots \left(1+i_{t+N} \right)
\]

\(N \) terms

1. If the interest rate was constant \(i \) for \(t \) to \(t+N \)

\[
V_{t+N} = V_t (1+i)^N
\]

2. If \(t=0 \) (i.e., the present)

\[
V_N = V_0 (1+i)^N
\]

or also written

\[
FV = PV (1+i)^N
\]

This is the FV formula for a constant interest rate.
The formula above states that:

\[FV \quad \text{increases on} \]

- \(PV \uparrow \)
- \(i \uparrow \)
- \(N \uparrow \)

From \(FV \quad PV \quad (1+i)^n \)
we can divide both sides by \((1+i)^n \):

\[
\frac{FV}{(1+i)^n} \quad \frac{PV}{(1+i)^n}
\]

\[
FV \quad PV
\]

which is the standard single sum discounting equation.

This shows that \(PV \uparrow \)

If \(FV \uparrow \), \(i \downarrow \) \(N \downarrow \)
\[\frac{FV}{PV} = (1+i)^N \]

Divide through by \(FV \)

\[\frac{FV}{FV} = (1+i)^N \]

Raise both side to \(\ln \) power:

\[\left[\frac{FV}{PV} \right]^N = \left[(1+i) \right]^N \]

\[t = \left[\frac{FV}{PV} \right]^N \]

\[c \left[\frac{FV}{PV} \right] \]

\[\frac{1}{c} \left[\frac{FV}{PV} \right]^N \]

To solve for \(N \), start with:

\[\frac{FV}{PV} = (1+i)^N \]

Take \(\ln \) of both side:

\[\ln \left(\frac{FV}{PV} \right) = N \ln (1+i) \]

\[\ln \left(\frac{FV}{PV} \right) \]

\[\frac{\ln (FV/PV)}{\ln (1+i)} \]

\[-N \]
Perpetuity

If you put $100 into a bank that pays 5% per year, you can withdraw $5 each year forever, starting one year from now. If you can withdraw the interest earnings and deposit Amount you make the deposit today so its PV = interest earnings - PV, which is a perpetual payment you can make to yourself.

\[\text{PV} = \text{Pmt} + \text{PV} \]

which we can rewrite to be

\[\text{PV} - \text{Pmt} \]

which is the present value of a perpetuity.

Alternate solution

\[\text{PV} = \frac{\text{Pmt}}{1+i} + \frac{\text{Pmt}}{(1+i)^2} + \frac{\text{Pmt}}{(1+i)^3} + \ldots \]
Example: What is the PV of receiving $50/yr forever if \(i = 8\% \)?

\[
\begin{align*}
\text{PV} & \quad \text{Pmt} \quad 50 \\
\frac{1}{i} & \quad \frac{1}{0.08} \\
\end{align*}
\]

Combining the two concepts of single sum discounting and perpetuities we can compute the value of a delayed perpetuity.

Ex: What is the PV of receiving $50/yr forever if the first payment is received 6 years from now? \(i = 8\% \)

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 50 & 50 & 50 & 50 \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & t
\end{array}
\]

\[
\begin{align*}
V_5 & \quad \text{Pmt} \quad $50 \\
\frac{1}{i} & \quad \frac{1}{0.08} \\
V_5 & \quad \frac{V_5}{(1+i)^5} \quad \frac{625}{(1.08)^5} \quad \frac{625}{1.4693} \\
V_0 & \quad \text{PV} \quad \frac{625}{1.4693} \quad \frac{625}{1.4693} \\
& \quad \frac{625}{1.4693} \quad 425.36
\end{align*}
\]
Annuity is a series of equal payments with an end date. It can be thought of as a perpetuity minus a delayed perpetuity.

\[P \]

\[D \]

\[PD \]

\[PV_P = \frac{Pmt}{i} \]

\[PV_D = \frac{Pmt}{(1+i)^n} \]

\[PV_{Annuity} = \frac{Pmt}{i} - \frac{Pmt}{(1+i)^n} \]

$6.75 \quad 475.36 \quad 99.64$

The present value of $50 per year for 5 years at an 8% interest rate is $1.18.$
\[
\frac{50}{1.08} + \frac{50}{(1.08)^2} + \frac{50}{(1.08)^3} + \frac{50}{(1.08)^4} + \frac{50}{(1.08)^5} = 81.92
\]

Instead of the compounding time period,

you earn 1% per month from much you have after 12 months if you start with \#1.

\[
FV = PV (1+i)^n
\]

or \(V = V (1+i) \) \((n)^2 \)

Given that you began with \#1, your interest earning over the year must be \(0.1268\).

Your % gain over the year is

\[
\frac{0.1268}{1.00} = 2.68\%\]

If you invested \#1 in a bank that pay 12% per year, after 1 year you would lose \(FV = PV (1+i)' = 1.12' = 1.12 \)
So over the year you would have earned 12.5%:
\[r = 2 \times \frac{12.5}{100} = 25 \% \]

Why the difference? It depends on how often interest is compounded each year.

Expressing Interest Rates on an Annual Basis

Let \(r \) be the interest rate you earn over a period.

Let \(m \) be the number of payments per year.

APR (Annual Percentage Rate)

\[APR = \frac{r 	imes n}{m} \quad \text{[or } r = \frac{APR}{m} \text{]} \]

(APR is a general finance term)

However, in real estate lending (lending in general), the reported APR means something different in most cases.
Effective Annual Yield (EAY) and APR are related:

\[\text{EAY} = \frac{100}{(1 + \frac{\text{APR}}{m})^m} - 1 \]

Where:
- \(\text{EAY} \) is the Effective Annual Yield
- \(\text{APR} \) is the Annual Percentage Rate
- \(m \) is the number of compounding periods per year

If no financing is beyond the Note rate, the FTL APR can be rounded to the nearest 1/8% or 1/16% for FTL APR to report.

Federal Reserve Board:
- APR that adjusts
- Note rate to FTL APR
- We will cover this the

Example:
- APR
- Note rate
- FTL APR
Our textbook uses the common approach to finding interest rate as \(r \% \) compounded \(y \) times \(\frac{X\%}{100} \) compounded \(y \) times in a year where \(X\% \) is the APR and \(y \) indicates \(m \).

Example: A bank pays \(5\% \) compounded quarterly. What is \(r, m, \) APR and \(ENY \)?

\(APR = 5\% \)

\(m = 4 \) as there are four quarters in a year.

\(\frac{r}{m} = \frac{0.05}{4} = 0.0125 \)

\(ENY = 1 - \left(1 + \frac{r}{m}\right)^m = (1.0125)^4 - 1 \)

\(= 10.38 \%

10.38\%
Ex for a 20% note rate:

For a mortgage (with no additional fees), what is the APR?

Note: Note rates are APR's.

Legally, a promissory note, dated the term "note rate" describes the
interest rate paid on the loan.

\[\text{EAY} = \left[1 + \frac{\text{APR}}{m} \right]^m \]

(Mortgages compound monthly so \(m = 12 \))

\[\left[1 + \frac{12\%}{12} \right]^{12} \]

\[- (0.01)^{12} - 1 = 0.268 \quad 2.68\% \]

Please note that a mortgage you may
charged the Note Rate/12 each month.
To be charged a 2% EAR
Will not work if your note rate is

\[E\left(\frac{n}{2}\right) = \left(1 + r\right)^{2} - 1 \]

2. \((1+r)^2 \)

2 \((1+r)^2 \)

\[
\left(2 \right)^{\frac{11}{2}} \quad r
\]

\[1.009489 + r \]

\[r \quad 0.009489 \quad 0.009489 \]

APR Note Rate 0.069489 \times 2

39%
Assuming no "back fees" or other charges, a loan payment is first applied to the interest that has accrued, with remainder being used to pay down the principal (i.e., to "amortize" the loan).

With a loan payment, we modify the basic equation as follows:

\[V_{t+1} = V_t + l_t - P \text{ Payment} \]

Note: This is the balance after you make your payment.

This equation always works to determine a loan balance at any point in time, even of interest rates and payments vary.