An Implementation of the Bayesian Transformed
Gaussian Spatial Prediction Model

David Bindel Victor De Oliveira
University of Maryland University of Maryland

Benjamin Kedem
University of Maryland

August 27, 1997

1 Introduction

The problem of statistical spatial prediction or interpolation arises in meteo-
rology, geology, epidemiology, and other sciences that analyze spatial data. A
spatial phenomenon is measured at a finite number of locations, but the be-
havior of the phenomenon at many other unmeasured locations is of interest.
For example, a meteorologist who has rain gauge measurements of rainfall accu-
mulation at a small number of locations may be interested in the accumulated
rainfall at a location where it is impractical to place an additional rain gauge.
The problem is how to predict the phenomenon of interest (here, rainfall ac-
cumulation) and attach an uncertainty measure to this prediction. One way
to model a spatial phenomenon is to view it as a realization of a random field
Z(-) and to consider the observations as a sample from that random field. The
data and any known location-dependent covariates are then used to predict the
value Z(sg) at some unmeasured location sg, and to attach to this prediction
an uncertainty measure o(sq).

Ordinary kriging, a popular spatial prediction technique, is based on the
assumption that the random field Z(-) is Gaussian. However, many natural
phenomena, including our example of rainfall, seem distinctly non-Gaussian.
One way to model non-Gaussian behavior is to assume that the random field
Z () can be approximated by applying a nonlinear transformation to a Gaussian
random field Y (-). Trans-Gaussian kriging is the standard model for prediction
in such transformed fields. In trans-Gaussian kriging, a transformation is se-
lected that makes the data approximately Gaussian, the methods of ordinary
kriging are used to predict in the Gaussian field, and the resulting prediction is
back-transformed with a correction for bias.

The Bayesian Transformed Gaussian (BTG) model is an alternative to trans-
Gaussian kriging. Under the BTG model, no single transformation function is
explicitly chosen. Instead, a parametric family of possible transformations is

considered, where the transformation parameter itself is considered unknown.
In this way, the effects of choosing an incorrect transformation function are
reduced.

2 Synopsis of the btg program

The btg program is an implementation of the BTG model. For the source
information on the BTG model for spatial prediction, see the paper by De
Oliveira, Kedem, and Short [3], from which the notation used in this paper is
derived. The btg program can perform:

¢ Plotting of the predictive density function for any specified location

e Computation of medians and 95% prediction intervals based on the above
pdf

e Mapping of predictions and prediction uncertainties over a rectangular
region

e Cross-validation assessment
e Estimation of transformation and correlation parameters

Ordinary users can easily change program settings and do computations
through the graphical user interface. Users with C++ programming background
can use the computational engine in their own programs or extend the existing
program.

3 The basic algorithm

Predictions produced by btg are based on the Bayesian predictive density func-
tion p(zo|z), where z = (21,...,2,)" is the vector of observations. As described
in the paper by De Oliveira, Kedem, and Short [3], the density p(zo|2) is a
mixture of transformed t-densities with mixing distribution p(d, A|z)

p(20]2)

/ / p(2016, A, 2)p(8, A|z) dB d
AJO

Ja Jo p(2010, X, 2)p(2]6, \)p(6)p(X) d6 dA
Ta Jo p(216, \)p(8)p(X) d6 dA

where 6 and A are respectively the correlation and transformation parameters,
which in the BTG model are assumed random. Expressions for p(zo|d, A, z) and
p(z]6, \) are given in the aforementioned reference.

Because the § and)\ parameters cannot be integrated out analytically, a
Monte Carlo algorithm is used to approximate the predictive density numeri-
cally. Approximations for the pdf p(zo|z) and the cdf F'(zq|z), respectively given

by pm(20|2) and ﬁ’m(zo|z), are obtained by generating independently 61, ... ,0,,
iid. ~p(@) and Aq,..., A 1i.d. ~ p()) and computing

Pm(20l2) = D p(206:, Ai, 2)w(6i, X)),
=1

Fn(z0l2) =) Flz0l6:, A, 2)w(6s, \s),
=1

p(2]0;, Ai)
E;nzl (216, A;)

There is a simple formula for p(zo|6, A,z), but there is no closed form for
F(20|6, A, 2). However, F(z9|0,), z) is a transformed t cdf, and it can easily
be transformed back into a standard t cdf. Though the standard t cdf cannot
be evaluated directly, it has a simple relation to the incomplete beta function [1],
which can be evaluated efficiently using a continued fraction expansion [5], [6].

The btg program plots densities by discretizing the effective range of zg and
computing P, (20]2) at each point in the mesh.

The btg engine computes the approximate median and symmetric 95% pre-
diction interval of Fy,(z|z) by using a bisection search to solve the equations

w(l;, i) =

F.(%|2) = 05
Ep(30 + 2]2) — Fp(30 —z|2) = 0.95

where Zy is the approximate median and z is the radius of the approximate
symmetric 95% prediction interval about 2.

4 Estimating model parameters

The btg program computes maximum a posteriori parameter estimates by min-
imizing the function

—p(z|0,)\) for € ©® and A € A
0 otherwise

f0,)) = {
where p(z|6,) is known up to a positive proportionality constant. Starting
from the highest probability parameter draw 6;, A; from the sample for Monte
Carlo integration, a Hooke-Jeeves direct search algorithm [4] is used to find the
function minimum.

5 Transformation and correlation functions

5.1 Box-Cox transformation

The btg program uses the Box-Cox family of transformations for “normalizing”
positive data

21 for A#£0
g(z) = A f
logz for A=0

The resulting family of distributions includes the Gaussian distribution (A =
1) and the log-Gaussian distribution (A = 0). By default, the parameter \ is
assumed to have a uniform prior distribution on [-3, 3], but the user can specify
a different interval of support.

5.2 Correlation functions
The isotropic correlation functions used by the btg program are
Exponential correlation
22
Ko(l) = 67",

where 0; € (0,1) and 62 € (0, 2].

Ko(l) = m (é) . Ko, (%) ;

where 61 > 0 and 62 > 0 and Ky, is a modified Bessel function of the third
kind and order 6, [1], [6].

Matérn correlation

Rational quadratic correlation

2\ %
1

where 8; > 0 and 6> > 0.

Spherical correlation

)3 for z < 64

0 otherwise

3
~~
8
SN—r
Il
—
I
e
N
e
N——
+
M
~/
Jle

where 6; > 0.

[m=] TKBTG X

File Compute Help

Loading script... A
Loaded /home/dbindel/class/stat/data/rainl .dat

Predicting at §6,. 5) ...
Median: 26.202
95 % FI: (20.78686, 31.6174)

Estimating Monte Carlo error at {6, G5
Fhi: 0.000773752

|

Current data file: ‘homesdbindel/class/statfdatasraint . dat
xrange: 0453696 to 11.3032

yrange: 0771726 to 107497

Zrange: 17.72 to BE.E5

Range of z0: |0.1 to |100 ; mesh size of [1000
Sample size: iZDD

Lambda range: |-3 to |3

Correlation - Exponential .- Matem <% Rational quadratic - Spherical
Trend order & 0 - 1 -2
Open data | Update settings |

Figure 1: The tkbtg interface layout

The value [is the Euclidean distance. In all the above correlation functions,
6, controls the range of correlation of the random field, while for the exponential,
Matérn, and rational quadratic correlation functions, 62 controls roughness or
smoothness of the random field.

For the exponential correlation function, 6; is assigned a uniform prior on
(0,1) and 6 is assigned a uniform prior on (0,2). For the Matérn, rational
quadratic, and spherical correlation functions, the btg program works with the
transformed parameters 6, = —log(61) and Gy = — log(f2), which are assigned
uniform priors on (0,1).

6 The tkbtg interface

The tkbtg program is an X windows graphical interface to the btg program.
With tkbtg, users can interactively manipulate program settings and access the
functions of the btg engine.

The tkbtg console, pictured in figure 6, has three major parts. The menu

bar at the top of the screen is used to execute computational tasks, load and save
setting script files, and view the online help document. Program output and
status messages are displayed on the main window. The console panel displays
information about the current data set and allows users to view and update
program settings.

6.1 Opening a data file

Data files are straight ASCII text files. On each line are the coordinates and
value for one observation. For instance, an observed value of 29.55 at the point
with coordinates (6.105,0.772) would look like

6.105 0.772 29.55

By default, tkbtg will look for data files in the directory ~/btg_data. To
change this behavior, create a file .btgrc in the home directory that looks like

set btg_path ~/MyData

where ~/MyData is the name of the data directory.

To open a data file, click on the “Open data” button on the main screen,
then select the data file you want from the file selection dialog. If the file is
successfully loaded, the name of the file will appear in the “Current data file”
field, and the ranges of the observation coordinates and values will appear in
the “x range,” “y range,” and “z range” fields.

6.2 Settings

To modify the program settings, change the appropriate field and click on the
“Update settings” button. If you do not update settings, the btg engine will
continue to use the old program settings.

Range of z; Controls the effective range over which the predictive density is
considered. When the predictive density function is plotted, this is the
range that is used. Predictions and 95% prediction intervals are truncated
to this range. For instance, if the median of the approximated prediction
density at some location was 75 with a symmetric 95% prediction interval
of (45,105) and the effective range of zo was set at (1,100), the program
would report the truncated interval of (50,100).

The effective range of zg should always be strictly positive, since the do-
mains of the Box-Cox family transformation functions are the positive
reals.

Mesh size The mesh size is the number of points where the approximate pre-
dictive density function is computed. When the program computes the
median and 95% prediction interval at a point, the target precision for
the root-finding routine is the distance between adjacent mesh points.

Sample size Controls the size m of the parameter sample used for the Monte
Carlo integration algorithm. Increasing the sample size decreases the
Monte Carlo approximation error, but it also increases the memory re-
quired by the program and the time required for predictions.

Lambda range The lambda range setting controls the interval of support for
the uniform prior distribution of the transformation parameter X. A single
transformation can be selected by setting the range of A to include a single
value. For instance, using a range of [0, 0] will cause the program to use
only the logarithmic transformation.

Correlation Controls which family of correlation functions is used. See sec-
tion 5.2 for descriptions of the correlation functions.

Trend order Controls the mean function of the underlying Gaussian random
field. Setting the trend order to n tells the program to use a polynomial
of degree n in the location coordinates as the mean value for the Gaussian
field. By default, the trend order is zero, corresponding to a constant
mean function.

6.3 Computations

The following computational tasks are available via the tkbtg “Compute” menu:

Plot density Writes to a file the plot of the approximate predictive density
Pm(20|2) at a specified location. For systems where gnuplot is installed,
the plot is displayed on the screen.

Predict Computes the approximate predictor and 95% prediction interval at
a specified location. Note that results will be truncated to the range of 2
specified by the user (see section 3).

Mean squared density approximation error Estimatesa bound on the stan-
dard error in p(zo|z) due to Monte Carlo approximation using the formula

\/zzio((p(zowm,z) — Pm(20]2))w(8i, \:))?

m

max
20€S

where S is the set of mesh points used in the discretization of the effective
range of zg.

Estimate parameters Computes the maximum a posteriori estimates of the
transformation parameter A and the correlation parameters 6.

Cross-validate Does single-point-deletion cross-validation for each point in
the data set, and writes the results to file. For each point, the program
outputs:

e Observation location

Observed value

Value predicted using the other points

95% prediction interval
Residual

Scaled residual (residual divided by a quarter 95% prediction interval
width)

In addition, the program outputs a summary of the mean square of the
residuals and the actual coverage of the approximate 95% prediction in-
tervals.

Map Outputs maps of predictions and uncertainty measures over a rectangular
region. Prediction is done at each point on a grid with block size specified
by the user, and at each point the prediction and the uncertainty measure
(defined as a quarter the 95% prediction interval width) are written to
disk. When the mapping is complete, the user will have two ASCII text
files containing matrices for the prediction map and the uncertainty map.
The ordering of the (i,j) indices into the matrices corresponds to the
ordering of the (z,y) coordinates for the grid points. Thus, the first row
of the matrix corresponds to the bottom of the grid, and the first column
corresponds to the left side of the grid.

Initialize engine Reinitializes the prediction engine. Each time the prediction
engine is initialized, a new sample is taken for Monte Carlo integration.
The engine is automatically initialized before the first computation any
time a new data file is loaded or the settings are updated.

6.4 Loading and saving scripts

Once a data set has been loaded and the program settings have been tuned, it
may be useful to save the settings for later use. This can be done using the
“Save script” command under the “File” menu. The saved script will contain
the currently displayed settings and the name of the currently loaded data file.
If the settings have been altered since the last time the engine settings were
updated, the displayed settings will be saved, not the settings being used by the
prediction engine.

Settings scripts can be loaded using the “Load script” under the “File” com-
mand. Loading a settings script causes the program to load the data file named
in the script with the saved settings. Loading a settings script automatically
updates the prediction engine settings.

7 Error messages

The following is the list of btg error messages and their probable causes

Error: no data loaded The program has tried to perform a computation and
discovered that no data set has been loaded.

Error: could not open file The specified file could not be opened for out-
put when loading data or when doing a density plot, cross-validation, or

mapping.

Error: could not compute Student t cdf The program could not compute
the value of a transformed Student t cdf. at some point in the specified
effective range for zo. This error may occur when the user-specified range
contains values that are negative or are too close to zero. In particular,
this error may occur if the default setting of the effective range has not
been changed after loading a new data set, or if the engine settings have
not been updated after a change to the range setting.

Error: could not compute p(z | theta, lambda, i) An error occured when
the program tried to compute p(z|6;, ;). This may occur if the data set
contains negative values, or if there was a numerical problem in a compu-
tation. The error might be fixed by trying again; if it recurs, it may be
because the current implementation of the btg engine is unable to handle
the data set in its current form. This error can occur if the data set is
badly scaled.

Error: could not compute quantile to desired accuracy The root-finding
routine used to determine the quantiles of the approximated predictive cdf
could not achieve the desired precision. The target precision is the length
of the effective range of zg divided by the mesh size. This error may oc-
cur if the length of the interval 2y is incorrectly specified or if the target
interval is very short and a large mesh size is used, leading to a target
precision very close to (or less than) the machine epsilon.

Error: could not compute modified Bessel function K The btg program
could not evaluate a modified Bessel function when it tried to evaluate
the Matérn class correlation function. The error might be fixed by trying
again; if it recurs, it may be because the current implementation of the
btg engine is unable to handle the data set in its current form.

Error: correlation is outside [0,1] The btg program encountered an error
when evaluating the correlation function. The error might be fixed by
trying again; if it recurs, it may be because the current implementation of
the btg engine is unable to handle the data set in its current form.

Error: could not factor matrix A correlation matrix was numerically sin-
gular and could not be factored. The error might be fixed by trying again
or by using a different correlation function. If the error persists, it may
because the current implementation of the btg engine is unable to handle
the data set in its current form. Large data sets are more likely to have
this problem; using only a subset of the observations may fix the error.

This error is also likely to occur if observation points are very close to each
other. If this is the case, rescaling the observation coordinates may help.

The btg engine can produce other errors, but these errors should not occur
even if there is a problem with the data set. If an error not listed above occurs,
it is probably because of a bug in the btg program.

A Program organization

The prediction program is constructed in four main layers

Support code These are auxiliary routines, largely adapted from public do-
main sources, that are used by the btg prediction engine. Support rou-
tines include LAPACK linear algebra routines [2]; a C translation of the
RKBESL routine for evaluating modified Bessel functions of the third
kind, which is from the SPECFUN library written by W. J. Cody; and
a modified version of a Hooke-Jeeves [4] optimization routine written by
Mark Johnson. The unmodified versions of these routines are available
from the Netlib software repository (http://www.netlib.org).

The dmat and dmatchol classes for double precision matrices and Cholesky
factorizations are written specifically for the btg program. The error-
handling class used by the btg program is also specifically written for the
btg program.

Prediction engine code These routines implement the core functionality of
the prediction engine. Most of the routines are members of the Predictor
class.

Transformation, correlation, and covariate functions These routines are
specified indepenedently of the prediction engine so that it is possible for
a user to specify a new transformation, correlation, or covariate function
without altering the prediction engine code.

Interface code The interface code consists of two parts: a C+-+ program,
which makes calls to the prediction engine and does some additional error-
checking and manages I/O; and a Tcl/Tk program, which communicates
with the C++ program via a Unix pipe.

A.1 Support code
A.1.1 Interface to LAPACK routines

The LAPACK is a widely-used set of linear algebra routines based on the BLAS
(Basic Linear Algebra Subprograms). The LAPACK source is publically avail-
able from Netlib, but many vendors supply optimized versions for specific archi-
tectures. The LAPACK and BLAS routines are implemented in FORTRAN 77,
though there is a C translation (CLAPACK), and there has recently been work

10

on a C++ interface to the routines (Lapack++). The btg program uses a spe-
cially designed C++ interface that handles the issues associated with interfacing
code that uses C semantics with code that uses FORTRAN semantics.

The dmat class implements a double precision matrix type with support
for basic arithmetic operations. Storage allocation and indexing is handled
automatically by the class, which stores matrices internally in a column-major
(FORTRAN style) order rather than in the standard C row-major order. Arith-
metic operations are implemented by calling the appropriate BLAS routines.
The dmatchol class implements the routines to factor and solve linear systems
using a Cholesky decomposition. Storage is indexed using the LAPACK packed
matrix format, and the routines to factor and solve call LAPACK routines.

A.1.2 The error-handling mechanism

Though the draft ANSI C++ standard includes an exception handling mech-
anism, most compilers do not yet include complete support for exception han-
dling. As a result, the btg program uses a less elegant, but more portable,
method for handling errors. Errors are signalled by setting an error flag and
saving a description of the error. Other code checks the setting of the error
flag before performing computations, and returns prematurely if the flag is set.
In this manner, errors trigger a series of premature subprogram returns until
control returns to the interface code (or whatever other code called the predic-
tion engine). The interface then outputs the error message and clears the error
status flag.

A.2 The prediction engine

To minimize repeated computations, the btg prediction works in three main
phases.

1. A sample of parameters is generated to be used in the Monte Carlo inte-
gration algorithm. For each parameter draw of 8;, A;, the btg engine does
the computations that involve only the original data and the parameters,
and saves the results for use in later steps.

2. Before doing specific computations at a location, the btg engine does
general computations that depend on the original data, the parameter
sample, and the prediction location.

3. Any specific prediction tasks are performed.

The first step only needs to be performed when a new data set is loaded or
when the program settings are changed. The second and third steps need to be
performed for every location-dependent prediction task.

11

A.3 The tkbtg interface

The tkbtg program is a Tcl/Tk script which provides a graphical user interface
to the btg engine functionality. In the current implementation, the tkbtg pro-
gram communicates with a C++ text interface program through a Unix pipe.
The text interface program interprets commands sent by the tkbtg program,
calls the prediction engine to perform requested computations, and outputs an
error code and any command output to the pipe.

B Using the Predictor class

The prediction engine for the btg program is implemented in a C++ class called
Predictor, which can be used by C++ programs to include the functionality
offered by the prediction engine. The header file for the Predictor class is in the
file btg013.hh.

B.1 Transformation, correlation, and covariate functions

The following auxiliary public definitions are found in btgfuncs.hh:

// Pointers to transformation, correlation, and covariate functions

typedef double (*PFTransform) (double lambda, double z);
typedef double (*PFCorrelation)(double *theta,
double x1, double yi,
double x2, double y2);
typedef double (*PFCovariate)(double x, double y);

The PFTransform type is used to point to a function to compute a nor-
malizing transformation gy or its derivative g}. PFCorrelation is used to
point to a function for computing a parameterized correlation function Ky,
and PFCovariate is used to point to functions to compute location-dependent
covariates for the underlying Gaussian field Y.

// Transformation (Box-Cox)

double BoxCox(double lambda, double x);
double DBoxCox(double lambda, double x);

These functions compute the Box-Cox transformation and its derivative.

// Correlation functions

double ExpCorr(double thetal],
double x1, double yi,
double x2, double y2);

double MaternCorr(double thetal],

12

double x1, double yi,
double x2, double y2);
double RationalCorr(double thetal],
double x1, double yi,
double x2, double y2);
double SphericalCorr(double thetal],
double x1, double yi,
double x2, double y2);

These functions compute exponential, Matérn, rational quadratic, and spher-
ical correlations.

// Covariate functions

double UnitFn(double, double);
double XFn(double, double);
double YFn(double, double);
double XYFn(double, double);
double XXFn(double, double);
double YYFn(double, double);

These functions compute the location-dependent covariates 1, z, y, zy, =2,
and y2.

B.2 Predictor class member functions

// Initialize / shutdown the predictor

Predictor();
~“Predictor();

The constructor:

o Sets the transformation type to Box-Cox

Sets the correlation type to exponential

Sets the covariate functions list to 1.

Gives A a uniform prior over (-3, 3).

Sets the Monte Carlo sample size to 500.

Sets the mesh size to 1000.

// Set different program options

// Syntax for variable argument list commands:

// SetCorrelation(PFCorrelation func, int n,

// double minl, double maxl, ...,

13

// double minn, double maxn)
// SetCovariates(int n,

// PFCovariate f1,

// PFCovariate fn);

void SetTransform(PFTransform func, PFTransform dfunc);

void SetCorrelation(PFCorrelation func, int num_parameters, ...);
void SetCovariates(int num_covariates, ...);

void SetLambdaRange(double min, double max);

void SetRange(double min, double max);

void SetSampleSize(int sample_size) ;

void SetMeshSize(int mesh_size);

The SetTransform function tells the prediction engine what functions to
use to compute the transformation and its derivative. SetCorrelation sets the
correlation function to be used and the ranges of the elements of the structural
parameter vector §. SetCovariates sets the list of covariate functions to be used
for determining the mean of the underlying Gaussian field. The unit function,
computed by UnitFn should always be included in the list of covariate functions.

Some transformation, correlation, and covariate functions are provided with
the program, but the user can also use his or her own functions.

SetLambdaRange sets the support interval for the uniform prior distribution
for A. SetRange sets the effective range of zp used for prediction and plotting.
SetSample is used to set the Monte Carlo sample size. SetMeshSize sets the
mesh size used to plot the approximate predictive density and to determine the
precision to which quantiles of the predictive density are sought.

// Load a data set
int Load(char *fname);

// Get the size of the current data set and the ranges
// of the x, y, and z values

int GetDataSize();

void GetRanges(double &xmin, double &xmax,
double &ymin, double &ymax,
double &zmin, double &zmax);

The Load function loads a data set from the named file. If the data is
successfully loaded, the function returns 1; otherwise, it returns 0.

The GetDataSize function returns the number of points in the loaded data
set. GetRanges returns the minimum and maximum values of the z and y
observation location coordinates and of the observed z values. If no data set is
loaded, the GetDataSize function returns 0 and the GetRanges function sets
all its output arguments to Q.

14

// Initialize the engine for different setting or for a new point (x,y)

void InitComputations();
void Precompute_pz0(double x, double y);

The InitComputations function is used to initialize the prediction engine.
This function must be called before performing computations after loading a
new data set or changing settings.

The Precompute_pz0 function does location-dependent initialization. This
routine must be called before doing prediction or plotting at a location.

// Compute the median and 95J, prediction interval
// Also compute the estimated CDF, or other quantiles
// and confidence intervals

void ComputeStats(double &med, double &1b, double &rb);
double ComputeCDF(double z0) ;

double ComputeQuantile(double alpha);

double ComputeSymmetricCI(double alpha, double med);

The ComputeCDF function evaluates the approximate predictive cdf F}, (20|2).
The ComputeQuantile and ComputeSymmetricCI functions use a bisection search
to find quantiles and symmetric prediction intervals for the approximate predic-
tive density. The ComputeStats function returns the median of the approximate
predictive density and left and right endpoints for a 95% symmetric prediction
interval about that median.

The function Precompute_pz0 must be called before using any of these func-
tions.

// Diagnostics: Estimate Monte Carlo error for p(z0 | z)
// or cross-validate at the kth data point (zero indexed)

double ComputeErrorEstimate(double x, double y);
void CrossValidate(int k, double &x, double &y, double &actual,
double &median, double &1b, double &rb);

The ComputeErrorEstimate function computes an estimate of the maximum
standard Monte Carlo error in the approximation of p(zg|z) over the specified
effective range of 2.

The CrossValidate function performs cross-validation at the kth observa-
tion location (using zero-based indexing), and returns the observation location
and value and the predictive density median and the symmetric 95% prediction
interval.

// Estimate model parameters

void EstimateModel(double &lambda, double *theta, int &ntheta_arg);

15

The EstimateModel routine computes maximum a posteriori estimates for
the transformation parameter A and the correlation parameter vector §. The
function argument ntheta_arg is used to return the length of the parameter
vector used by the current correlation function.

// Plotting routines: plot a distribution or a map of the error
// If xflag = 0, don’t include coordinates

// (density plot is a vector of reals, map is a matrix)
// else, include coordinates

// (density plot is a vector of x/y pairs,

// map is a vector of x/y/z triples)

void Plot(ostream &os, int x_flag = 0);
void Map(double xmin, double xmax, double ymin, double ymax,
double step, ostream &osmap, ostream &oserr, int x_flag = 0);

Tbe Plot function plots the approximate predictive pdf over the effective
range of 29 and writes the output to os. By default, the output is formatted
as a vector of values for p(z|z) for each zp in the mesh. However, if x_flag is
nonzero, both the value of 2y and the value of p,,(z0|2) will be output for each
2 in the mesh.

The Map function summarizes the prediction and uncertainty over a rectan-
gular region specified by xmin, xmax, ymin, and ymax. Prediction is done at grid
locations step units apart, starting from the lower left corner of the rectangle.
Predictions are written to osmap, and uncertainty measures (one quarter the
95% prediction interval width) are written to oserr.

By default, the maps are written as matrices, where the first row corresponds
to the bottom of the region and the first column corresponds to the left side.
However, if the argument x_flag is given a nonnegative value then the maps
will be output as vectors of x,y, z triples

References

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathemat-
ical Functions. National Bureau of Standards, Washington, D.C., 1964.
Reprinted by Dover Publications, New York, 1968.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Soren-
son. LAPACK User’s Guide. Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1992. Also available in HTML format from Netlib.

[3] V. De Oliveira, B. Kedem, and D. Short. Bayesian prediction of transformed
gaussian random fields. To appear in the Journal of the American Statistical
Association, December 1997.

16

[4] R.Hooke and T. A. Jeeves. Direct search solution of numerical and statistical
problems. Journal of the ACM, 8:212-229, April 1961.

[5] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in C. Cambridge University Press, Cambridge,
1988.

[6] Shanjie Zhang and Jianming Jin. Computation of Special Functions. John
Wiley and Sons, Inc., New York, 1996.

17

