

Investment Analysis

- Equity Investment
 - All assets need to be financed in some way. A balance sheet tells us how. Equity is the ownership portion. The mortgage is the debt portion
- Motivations for CRE Investing
- Annual Net Income from Operations
- Price Appreciation
- Diversification
- Tax Benefits

Investment Strategies

- Property Sector Investing choose a specific property type and stick to that
- Contrarian Investing go against the flow (Invest in the properties others are avoiding
- Marketing Timing for those who can forecast the cycle
- Growth Investing -
- Value Investing -
- Core Property Investing Invest in existing, seasoned, highly leased properties

Investment Styles

- Size-Based Strategy
- Tenant-Based Strategy
- Arbitrage Investing
- Turnaround Investing
- Opportunistic Investing
- Blue Chip Investing
- Development

Investment Analysis

- Internal Rate of Return (IRR)
 - > The discount rate forces the net present value to equal zero.
 - If IRR > r;Accept Project
 - If IRR < r; Reject Project</p>
 - > Where r is a required return or hurdle rate

Investment Analysis

- Net Present Value (NPV)
 - Discounted value of the future expected cash flows net of any outlays
- The discount rate is the capital cost for the investor.
- If NPV>0, accept project
- If NPV<0, reject project</p>
- NPV is the increase in wealth to the equity investor

Debt Financing

Equity Dividend = NOI - ADS

- NOI = Net Operating Income
- ADS = Annual Debt Service; the annual payment on debt
 - > This is both principal and interest
 - It is calculated as 12 times the monthly payment
- \blacktriangleright The equity dividend is also referred to as the before-tax cash flow from operations (BTCF_0).
- \blacktriangleright When no debt is used, the BTCF_0 or Equity Dividend is the NOI

Debt Financing

Equity Dividend Rate =

- Equity Dividend/Initial Equity Investment
- Also called the "cash on cash" rate
- Debt Coverage Ratio (DCR) = NOI/ADS
- The DCR is a vital ratio for lenders.
- What if the DCR<1?</p>
- DCR less than one is common for new developments going through the lease up process

Debt Financing

- Example 11-1:
 - \$1,000,000 Property;
 - $\triangleright~95\%$ allocated to building and 5% to land
- > 70% LTV; 7% Interest Rate, 30 Years
- \$700,000 debt; \$300,000 equity
- Monthly Payment = \$4657.11
- ADS = 12 × \$4657.11 = \$55,885
- ▶ NOI₁ = \$85,000

Before-Tax Cash Flow

- Equity Dividend = NOI-ADS
- ▶ \$85,000 \$55,885 = \$29,115
- \blacktriangleright This is also the ${\rm BTCF}_{\rm o}$ for this year.
- Equity Dividend Rate = EQDIV/Equity \$29,115/\$300,000 = 9.71%
- Debt Coverage Ratio =
- ▶ \$85,000/\$55,885 = 1.521
- > These ratios all pertain to the first year of operations

Before-Tax Cash Flow

- Example 11-1 continued....
- Before-Tax Cash Flow from the Property Sale (BTCF_s):
- BTCF_s = Sales Price Mortgage Balance In Example 11-1, if the property were sold in Year 4 for
- \$1,100,000 then
- BTCF = \$1,100,000 \$668,322 = \$421,678
- The mortgage loan balance (\$668,322) is computed as previously. See Chapter 4.

After-Tax Cash Flows

- > Calculating the after-tax cash flow from operations
- Step I: Compute taxable income

Net Operating Income - Depreciation -Interest Taxable Income

After-Tax Cash Flows

- From Slide 11-10, Depreciation is based on a building value of \$950,000 over 27.5 years
 - Depreciation = \$950,000/27.5 = \$34,545
- Interest = \$48,775 using the "amort" function on the financial calculator.

After Tax Cash Flows

From Example 11-1, year 1 taxable income would be:

NOI =	\$85,000
Depreciation	- \$34,545
Interest	<u>- \$48,775</u>
Taxable Income	\$ I,680

After Tax Cash Flows

- Step 2: Compute Taxes
- ▶ Taxes (at 28%) = .28 x \$1680 = \$470
- Step 3: Compute after-tax cash flow from operations for year I
- ► ATCF₁ = BTCF₁ Taxes
 - = \$29,115 \$470
 - = \$28.645

After Tax Cash Flows

- Taxes on the property sale
 - Gain from property value increase
 - > Taxed at capital gains rate for the investor
 - Gain from prior depreciation
 - Taxed at 25%

After Tax Cash Flows

- From Example 11-1, Slide 11-12
- Before tax cash flow from the property sale = \$421,678
- <u>Step 1</u>: Compute tax on property value increase: \$1,100,000 - \$1,000,000 = \$100,000
 Taxed at 15% capital gains rate = \$15,000

After Tax Cash Flows

- <u>Step 2</u>: Compute tax on prior depreciation: 4 Years at \$34,545 = \$138,180 Taxed at 25% = \$34,545
- Step 3: Compute total taxes from sale: \$34,545 + \$15,000 = \$49,545

After Tax Cash Flows

- Step 4: Compute after-tax cash flow from the property sale
- ATCF_s = BTCF_s Taxes ATCF_s = \$431,678 - \$49,545 = \$382,133
- Analysis
- Compute After-Tax Internal Rate of Return
- Compute After-Tax Net Present Value

