Solutions to Problems - Chapter 5

Adjustable and Floating Rate Mortgage Loans

Problem 5-1
(a) Compute the payments at the beginning of each year of the PLAM.

Principal	$=$	$\$ 95,000$	Inflation Adjustment $=$
6.00%			
Term	30 years	Points	
6.00%			
Interest Rate	$=$	4.0%	

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Monthly									
		Annual	Interest		Monthly	Monthly		EOY	Inflation
	BOY	Interest	Rate		Interest (3)	Amort	Annual	Balance	Adjusted
Year	Balance	Rate	(2)/12	Payments	$\underline{\mathrm{x}(1)}$	(4) - (5)	Amort	(1) -(7)	EOY
									Balance
0	\$95,000	4.00\%	0.33\%	\$453.54	\$316.67	\$136.88	\$1,672.98	\$93,327	\$98,927
1	98,927	4.00\%	0.33\%	480.76	329.76	151.00	1,845.61	97,081	102,906
3	102,906	4.00\%	0.33\%	509.60	343.02	166.58	2,036.05	100,870	106,922
4	106,922	4.00\%	0.33\%	540.18	356.41	183.77	2,246.15	104,676	110,956
5	110,956	4.00\%	0.33\%	572.59	369.85	202.73	2,477.92	108,479	114,987

(b) The loan balance at the end of the fifth year $=\$ \$ 108,479$.
(c) IRR(CF1, CF2,CFn)

$\mathbf{C F}_{\mathbf{j}}$	$\mathbf{n}_{\mathbf{j}}$
$-\$ 89, \mathbf{3 0 0}$	$\mathrm{n}=12$
453.54	$\mathrm{n}=12$
480.76	$\mathrm{n}=12$
509.60	$\mathrm{n}=12$
540.18	$\mathrm{n}=11$
572.59	$\mathrm{n}=1$

Solve for the annual IRR:

$$
=0.85 \% \times 12=11.11 \%
$$

Problem 5-2

(a)

Monthly Payment $=\$ 1,199.10$
(b)

Loan balance at EOY $1=\$ 197,544$
(c)

Monthly Payment $=\$ 1,327.75$
(d)

Loan balance at EOY $2=\$ 195,370$

(e)

Monthly Payment for year $1=\$ 1,000$
(f)

Monthly Payment for year $2=\$ 1,166.67$

Problem 5-3

(a)

Monthly Payment = \$997.95
Loan Balance EOY 3 = \$145,244
(b)

New Monthly Payment $=\$ 906.30$
(c)

Interest only monthly payment $=\$ 875$
Monthly payments in year $4=\$ 935.98$

Problem 5-4

Monthly payment during 1 year $=\$ 423.85$
(b)

Monthly payment in 2 year $=\$ 635.55$
(c)

Percentage increase in monthly payment $=50 \%$
(d)

Monthly payments at beginning of year $4=\$ 617.95$

Problem 5-5

(a)

Interest only payments for the 1 year $=\$ 833.33$
(b) The loan balance is $\$ 200,000$. To reset the interest rate at 6% and to amortize the loan over the remaining 27 years (or 324 months) we have:

PV	$=$	$-\$ 200,000$
i	$=$	$6 \div 12$
FV	$=$	0
n	$=$	324
Solve PMT	$=$	$\$ 1,247.97$

Problem 5-6

Compute the payments, loan balance, and yield for an unrestricted ARM

Principal	$=$	$\$ 150,000$
Points	$=$	2.00%
Term	$=$	30 years
Initial Rate	$=$	6.0%

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
							EOY
	Annual	Monthly		Monthly	Monthly	Annual	Balance
	Interest	Interest		Interest	Amort	Amort.	(1) - (7)
	Rate	Rate		(3) $\mathrm{x}(1)$			
		(2)/12					
BOY					(4) -(5)		

Year	Payments							
0								
1	$\$ 150,000$	6.00%	0.50%	$\$ 899.33$	$\$ 750.00$	$\$ 149.33$	$\$ 1,842.02$	$\$ 148,158$
2	148,158	9.00%	0.75%	$\$ 1,200.31$	$\$ 1,111.18$	$\$ 89.13$	$\$ 1,114.78$	$\$ 147,043$
3	147,043	10.50%	0.88%	$\$ 1,359.42$	$\$ 1,286.63$	$\$ 72.79$	$\$ 916.79$	$\$ 146,126$
4	146,126	11.50%	0.96%	$\$ 1,467.12$	$\$ 1,400.38$	$\$ 66.74$	$\$ 844.50$	$\$ 145,282$
5	145,282	13.00%	1.08%	$\$ 1,630.42$	$\$ 1,573.89$	$\$ 56.53$	$\$ 720.27$	$\$ 144,562$

IRR(CF1, CF2,CFn)

$\mathbf{C F}_{\mathbf{j}}$	$\mathbf{n}_{\mathbf{j}}$
$-\$ 147,000$	
899.33	$\mathrm{n}=12$
1200.31	$\mathrm{n}=12$
1359.42	$\mathrm{n}=12$
1467.12	$\mathrm{n}=12$
1630.42	$\mathrm{n}=11$
$1630.42+144,562$	$\mathrm{n}=1$

Solve for the IRR:

$$
=\quad 0.85 \% \times 12=10.16 \% \text { (annual rate, compounded monthly) }
$$

Problem 5-7

Compute the payments, loan balances, and yield for an ARM that has a maximum 5\% annual payment cap and does allow negative amortization.

	Principal Term Points	$=$ \$150,000			
		=	30 years		
		=	2.00\%		
	Initial	te	7.0\%		
	(1)	(2)	(3)	(4)	(5)
	Rate				EOY
Year	Balance		Uncapped	Capped	Balance
1	\$150,000	7.00\%	\$997.95	\$997.95	\$148,476
2	\$148,476	9.00\%	\$1,202.89	\$1,047.85	\$149,298
3	\$149,298	10.50\%	\$1,380.27	\$1,100.24	\$151,894
4	\$151,894	11.50\%	\$1,525.03	\$1,155.26	\$155,695
5	\$155,695	13.00\%	\$1,747.28	\$1,213.02	\$161,731
6	\$161,731				

Note: EOY Balance is calculated by using: FV(n,i,pv,pmt)

```
PV = Loan amount
n \(=12\) months
i = Uncapped rate
PMT = Capped payment
\(\mathrm{FV}=\)
```

Calculator: IRR(CF1, CF2,CFn)

$\mathbf{C F}_{\mathbf{j}}$	$\mathbf{n}_{\mathbf{j}}$
$-\$ 147,000$	
997.95	$\mathrm{n}=12$
1047.85	$\mathrm{n}=12$
1100.24	$\mathrm{n}=12$
1155.26	$\mathrm{n}=12$
1213.02	$\mathrm{n}=11$
$1213.02+161,731$	$\mathrm{n}=1$

Solve for the IRR:
$=0.8706 \% \times 12=10.45 \%$ (annual rate, compounded monthly)

Problem 5-8

Compute the payments, loan balances, and yield for an ARM that has a 1% annual and 3% lifetime interest rate cap and does not accumulate negative amortization.

Principal	$=$	$\$ 150,000$
Points	$=$	2.00%
Term	$=$	30 years
Initial Rate	$=$	7.5%

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			Monthly	Payment	Monthly		Annual	
	Uncapped	Capped	Interest	(@)	Interest (1)	Monthly	Amort	EOY
	Interest	Interest	Rate	Capped	$\mathrm{x}(3) / 12$	Amort		Balance (1)
	Rate	Rate	(3) /12	Rate)		(5) - (6)		-(8)
BOY								
Balance								
\$150,000	7.50\%	7.50\%	0.63\%	\$1,048.82	\$937.50	\$111.32	\$1,382.75	\$148,617
148,617	9.00\%	8.50\%	0.71\%	\$1,151.44	\$1,052.71	\$98.74	\$1,232.11	\$147,385
147,385	10.50\%	9.50\%	0.79\%	\$1,255.55	\$1,166.80	\$88.75	\$1,112.59	\$146,273
146,273	11.50\%	10.50\%	0.88\%	\$1,360.78	\$1,279.88	\$80.89	\$1,018.84	\$145,254
145,254	13.00\%	10.50\%	0.88\%	\$1,360.78	\$1,270.97	\$89.81	\$1,131.12	\$144,123
144,123								

Calculator: IRR(CF1, CF2,CFn)

$\mathbf{C F}_{\mathbf{j}}$	$\mathbf{n}_{\mathbf{j}}$
$-\$ 147,000$	
1048.82	$\mathrm{n}=12$
1151.44	$\mathrm{n}=12$
1255.55	$\mathrm{n}=12$
1360.78	$\mathrm{n}=12$
1360.78	$\mathrm{n}=11$
$1360.78+144,123$	$\mathrm{n}=1$

Solve for the IRR:

$$
=\quad 0.80 \% \times 12=9.65 \% \text { (annual rate, compounded monthly) }
$$

