Solutions to Problems - Chapter 3
 Mortgage Loan Foundations: The Time Value of Money

Problem 3-1

a) Future Value =

FV(n,i,PV,PMT)
$=$
$=$
b) Future Value =

FV (7yrs, 6\%, \$12,000, 0)
\$18,044 (annual compounding)
FV(n,i,PV,PMT)
FV (28 quarters, $9 \% \div 4, \$ 12,000,0$)
\$22,375 (quarterly compounding)
c) Equivalent annual yield: (consider one year only)

$\begin{array}{rl}\text { Future Value of (a) } & = \\ & = \\ & = \\ (\$ 12,720-\$ 12000) / \$ 12 & 000=\end{array}$	FV(n,i,PV,PMT)
	FV (1yr, 6\%, \$12,000, 0)
	\$12,720
	6.00\% effective annual yield
Future Value of (b) =	FV(n,i,PV,PMT)
=	FV (1yr, 9\%, \$12,000, 0)
=	\$13,117
$(\$ 13,117-\$ 12,000) / \$ 12,000=$	9.31\% effective annual yield

$(\$ 13,117-\$ 12,000) / \$ 12,000=$
9.31\% effective annual yield

Alternative (b) is better because of its higher effective annual yield.

Problem 3-2

Investment A: 6\% compounded monthly

Future Value of A	$=$	
	$=$	$F V(n, i, P V, P M T)$
	$=$	FV $(12$ mos., $6 \% \div 12, \$ 25,000,0)$
	$\$ 26,542$ (monthly compounding)	

Investment B: 7\% compounded annually

$$
\begin{aligned}
\text { Future Value of B } & = & \text { FV(n,i,PV,PMT) } \\
& = & \text { FV }(1 \mathrm{yr}, 7 \%, \$ 25,000,0) \\
& = & \$ 26,750 \text { (annual compounding) }
\end{aligned}
$$

Investment B should be chosen over A. Investment B pays 7\% compounded annually and is the better choice because it provides the greater future value.

Problem 3-3

Find the future value of 24 deposits of $\$ 5,000$ made at the end of each 6 months. Deposits will earn an annual rate of 8.0%, compounded semi-annually.

Future Value	$=$	FV(n,i,PV,PMT)
	$=$	FV $(24$ periods, $8 \% \div 2,0, \$ 5,000)$
	$=$	$\$ 195,413$

Note: Total cash deposits are $\$ 5,000 \times 24=\$ 120,000$. Total interest equals $\$ 75,413$ or ($\$ 195,413-\$ 120,000$). The $\$ 120,000$ represents the return of capital (initial principal) while the $\$ 75,413$ represents the interest earned on the capital contributions.

Find the future value of 24 beginning-of-period payments of $\$ 5,000$ at an annual rate of 8.0%, compounded semi-annually based on an annuity due.

Future Value	$=$	$\mathrm{FV}(\mathrm{n}, \mathrm{i}, \mathrm{PV}, \mathrm{PMT})$
	$=$	$\mathrm{FV}(25$ periods, $8 \% \div 2,0, \$ 5,000)$
	$=$	$\$ 208,230$

Note: n is changed to 25 because the deposits are made at the beginning of each period. Therefore, the first deposit will be compounded 25 times whereas if the $1^{\text {st }}$ deposit was made at the end of the period it would be compounded only 24 times. This pattern holds true for each deposit made. The second deposit would be compounded 24 times and the last deposit would be compounded once. This example illustrates the difference between and annuity due (beginning of period deposits) and an ordinary annuity (end of period deposits).

Problem 3-4

Find the future value of quarterly payments of $\$ 1,250$ for four years, each earning an interest rate of 10 percent annually, compounded quarterly.

Future Value	$=$	FV(n,i,PV,PMT $)$
	$=$	FV (16 periods, $10 \% \div 4,0, \$ 1,250)$
	$=$	$\$ 24,225$

Problem 3-5

End of Year	Amount Deposited	FV(n,i,PV,PMT)	Future Value
1	$\$ 2,500$	$F V(4 \mathrm{yrs}, 9 \%, \$ 2,500,0)$	$\$ 3,529$
2	$\$ 0$	$F V(3 \mathrm{yrs}, 9 \%, 0,0)$	$\$ 0$
3	$\$ 750$	$\mathrm{FV}(2 \mathrm{yrs}, 9 \%, \$ 750,0)$	$\$ 891$
4	$\$ 1,300$	$\mathrm{FV}(1 \mathrm{yr}, 9 \%, \$ 1,300,0)$	
5	$\$ 0$		Total Future Value $=$
$\underline{\$ 5,837}$			

The investor will have $\$ 5,837$ on deposit at the end of the 5th year.
*Each deposit is made at the end of the year.

Problem 3-6

a) Find the present value of 96 monthly payments, of $\$ 750$ (end-of-month) discounted at an interest rate of 15 percent compounded monthly.

```
Present Value = PV (n,i,PMT,FV)
    = PV(96 periods, 15% \div 12, $750, 0)
    = $41,793 should be paid today
```

b) The total sum of cash received over the next 8 years will be:

8 years x 12 payments per year $\times \$ 750$ per month $=$	$\$ 72,000$
Total cash received by the investor	$\$ 72,000$
Initial price paid by the investor	$\underline{\$ 41,793}$
Difference: Interest Earned	$\underline{\$ 30,207}$

The difference represents the total interest earned by the investor on the initial investment of $\$ 41,793$ if each $\$ 750$ payment is discounted at 15 percent compounded monthly.

Problem 3-7

Find the present value of 10 end-of-year payments of $\$ 2,150$ discounted at an annual interest rate of 12 percent.

```
Present Value = PV (n,i,PMT,FV) - ordinary annuity
    = PV (10 yrs, 12%, $2,150, 0)
    = $12,148 should be paid today
```

Find the present value of 10 beginning-of-year payments of $\$ 2,150$ discounted at an annual interest rate of 12 percent.

```
Present Value = PV (n,i,PMT,FV)
    = PV (9 yrs,12%, $2,150, 0) + $2,150
    = $13,606 should be paid today
```

Note: $1^{\text {st }}$ payment of $\$ 2,150$ is not discounted because it is received immediately or at the beginning of year 1 . The remaining 9 payments are discounted at 12% annually. This problem illustrates an annuity due.

Problem 3-8

Find the present value of $\$ 45,000$ received at the end of 6 years, discounted at a 9% annual rate, compounded quarterly.

Present Value	$=$	PV (n,i,PMT,FV)
	$=$	PV $(24$ quarters, $9 \% \div 4, \$ 0, \$ 45,000)$
	$=$	$\$ 26,381$ should be paid today

Note that a quarterly interest factor is used in this problem because the investor indicates that an annual rate of 9\% compounded quarterly is desired.

Problem 3-9

Year	Amount Received		PV (n,i,PMT,FV)	Present Value
	$\$ 12,500$		PV $(1 \mathrm{yr}, 12 \%, 0, \$ 12,500)$	$\$ 11,161$
2	$\$ 10,000$		PV $(2 \mathrm{yrs}, 12 \%, 0, \$ 10,000)$	$\$ 7,972$
3	$\$ 7,500$		PV $(3 \mathrm{yrs}, 12 \%, 0, \$ 7,500)$	$\$ 5,338$
4	$\$ 5,000$		PV $(4 \mathrm{yrs}, 12 \%, 0, \$ 5,000)$	$\$ 3,178$
5	$\$ 2,500$		PV $(5 \mathrm{yrs}, 12 \%, 0, \$ 2,500)$	$\$ 1,419$
6	$\$ 0$		PV $(6 \mathrm{yrs}, 12 \%, 0, \$ 0)$	$\$ 0$
7	$\$ 12,500$		PV $(7 \mathrm{yrs}, 12 \%, 0, \$ 12,500)$	$\$ 5,654$

$$
\text { Total Present Value }=\$ 34,722
$$

* Each deposit is made at the end of the year

The investor should pay no more than $\$ 34,722$ for the investment in order to earn the 12% annual interest rate compounded annually.

Problem 3-10

Find the present value of $\$ 15,000$ discounted at an annual rate of 8% for 10 years.

Present Value	$=$	PV (n,i,PMT,FV)
	$=$	PV $(10$ yrs, $8 \%, 0, \$ 15,000)$
	$=$	$\$ 6,948$ (annual compounding)

The investor should not purchase the lot because the present value of the lot (discounted at the appropriate interest rate) is less than the current asking price of $\$ 7,000$.

Problem 3-11

What will be the rate of return (yield) on a project that initially costs $\$ 100,000$ and is expected to pay out $\$ 15,000$ per year for the next ten years?

Interest/IRR	$=$	$i(n, P V, P M T, F V)$
Interest/IRR	$=$	$i(10$ yrs, $-\$ 100,000, \$ 15,000,0)$
Interest/IRR	$=$	8.14%

It is a good investment for DDC because the IRR of 8.14% exceeds DDC's desired return of 8%.

Problem 3-12

What will be the rate of return (yield) on a project that initially costs $\$ 75,000$ and is expected to pay out $\$ 1,000$ per month for the next 25 years?

Interest/IRR	$=$	$i(n, P V, P M T, F V)$
Interest/IRR	$=$	$i(300$ months, $-\$ 75,000, \$ 1,000,0)$
Interest/IRR	$=$	15.67%

The total cash received will be: $\$ 1,000 \times 25$ years x 12 months = $\$ 300,000$
How much is profit and how much is return on capital?

Total Amount Received	$\$ 300,000$
Total Capital Invested (returned)	$\$ 75,000$
Total Profit (interest earned)	$\$ 225,000$

The total cost of the investment, $\$ 75,000$, is capital recovery.
The difference between the total amount received and the capital recovery is total profit earned.

Problem 3-13
(a)

Year	Amount Received*	PV (n,i,PMT,FV)	Present Value
1	\$5,500	PV (1 yr, 12\%, 0, \$5,500)	\$4,911
2	\$7,500	PV (2 yrs, 12\%, 0, \$7,500)	\$5,979
3	\$9,500	PV (3 yrs, 12\%, 0, \$9,500)	\$6,762
4	\$12,500	PV (4 yrs, 12\%, 0, \$12,500)	\$7,944
		Total Present Value =	\$25,596

The investor should pay not more than $\$ 25,596$ for investment in order to earn the 12 percent annual interest rate compounded annually.
(b)

End of Month	Amount Received*	PV (n,i,PMT,FV)	Present Value
12	\$5,500	PV (12 mos., $12 \% \div 12,0, \$ 5,500$)	\$4,881
24	\$7,500	PV (24 mos., 12\% $\div 12,0, \$ 7,500$)	\$5,907
36	\$9,500	PV (36 mos., 12\% $\div 12,0, \$ 9,500$)	\$6,639
48	\$12,500	PV (48 mos., $12 \% \div 12,0, \$ 12,500$)	\$7,753
		Total Present Value $=$	\$25,180

The investor should pay not more than $\$ 25,180$ for investment in order to earn the 12 percent annual interest rate compounded monthly. (Note: the periods (n) above should be calculated using a monthly number i.e 1 year = 12 periods)
(c) These two amounts are different because the return demanded in part (b) is compounded monthly. The greater compounding frequency results in a lower present value.

Problem 3-14

What will be the internal rate of return (yield) on a project that initially costs $\$ 100,000$ and is expected to receive $\$ 1,600$ per month for the next 5 years and, at the end of the five years, return the initial investment of $\$ 100,000$?

Interest/IRR	$=$	$i(n, P V, P M T, F V)$
Interest/IRR	$=$	$i(60$ months, $-\$ 100,000, \$ 1,600, \$ 100,000)$
Interest/IRR	$=$	1.6%
		--and $1.6 \% \times 12=19.2 \%$ (internal rate of return of 19.2%

Problem 3-15

Annual sinking fund payments required to accumulate \$60,000 after ten years

Payment	$=$	Payment(n,i,PV, FV)
Payment	$=$	Payment(10 yrs, 10\%, 0, \$60,000)
	$=$	$\$ 3,765$ per year

Note to Instructor: In problem 3-15(b), the text indicates that annual payments be calculated. However, the text should read: monthly payments.

Monthly sinking fund payments required to accumulate $\$ 60,000$ after ten years.

Payment	$=$	Payment(n,i,PV, FV)
	$=$	Payment(120 periods, $10 \% / 12,0, \$ 60,000)$
Payment	$=$	$\$ 292.90$ per month

Problem 3-16
a) Find the ENAR for 10\% EAY given Monthly Compounding.

ENAR	$=$	$[(1+$ EAY $) \wedge(1 / \mathrm{m})-1] \times \mathrm{m}$
	$=$	$[(1+.10) \wedge(1 / 12)-1] \times 12$
	$=$	$[1.00797414-1] \times 12$
	$=$	$[.00797414] \times 12$
	$=$.09568968 or 9.57%

b) Find the ENAR for 10\% EAY given Quarterly Compounding

ENAR	$=$	$[(1+$ EAY $) \wedge(1 / m) \times m$
	$=$	$[(1+.10) \wedge(1 / 4)-1] \times 4$
	$=$	$[1.0241137-1] \times 4$
	$=$	$[.0241137] \times 4$
	.0964548 or 9.56%	

Problem 3-17

Part 1, calculate annual returns compounded annually: (Note: calculator should be set for one payment per period)
The Annual Rate compounded Monthly:
Solution:

N	$=$	28
PMT	$=$	$\$ 1,200$
PV	$=$	$-24,000$
FV	$=$	0

Solve for the yield:
i $=\quad 2.486 \%(x 12)=29.83 \%$
The monthly rate can now be used to calculate the equivalent annual rate as follows:
The Annual Rate compounded annually:
Solution:

PV	$=$	-1
i	$=$	$29.83 \% \div 12$
PMT	$=$	0
N	$=$	12

Solve for the future value:
FV
=
1.34266

The annual rate of interest (compounded annually) needed to provide a return equivalent to that of an annual rate compounded monthly is:

$$
F V-P V=1.34266-1.0 \quad=\quad 34.2660 \%
$$

This return is far greater than the annual rate compounded monthly or 29.830%
This tells us that an investor would have to find an investment yielding 34.3% if compounding occurred on an annual basis (once per year) in order for it to be equivalent to an investment that provides an annual rate of 29.8% compounded monthly.

Problem 3-18

Goa1: To show the relationship between IRRs, compound interest, recovery of capital and cash flows.
a) Note: the sum of all cash flows is $\$ 17,863.65$. The investment is $\$ 13,000$, therefore $\$ 4,863.65$ must be interest (profit). The goal is (1) to determine the annual breakdown between interest (profit), recovery of capital (principal) from the cash flows and (2) show that compound interest is being earned on the investment balance at an interest rate equal to the IRR. This exercise should prove that the IRR is equivalent to an interest rate of 10% compounded annually. It should also demonstrate the equivalence between an IRR and compound interest.
(b) $\operatorname{IRR}=10 \%$ (annual rate, compounded annually)
(c) Proof:

Beginning	Investment	$\begin{aligned} & \text { 10\% } \\ & \text { Interest } \end{aligned}$	Cash Flow	Recovery of Capital (ROC)	End of Year
of Year					(Balance)
1	13,000.00	\$1,300.00	\$ 5,000.00	\$ 3,700.00	\$ 9,300.00
2	9,300.00	930.00	1,000.00	70.00	9,230.00
3	9,230.00	923.00	-0-	-0-	10,153.00*
4	10,153.00	1,015.30	5,000.00	3,984.70	6,168.30
5	6,168.30	616.83	6,000.00	5,383.17	785.13
6	785.13	78.51	863.65	785.14	-0-
		\$4,863.65	\$17,863.76	\$13,000.00	

[^0]
[^0]: * Note: Because the cash flow in year 3 is zero, interest must be accrued on the balance of \$9,230 during year 3 and added to the investment balance.

