Fin 5433: Solutions to Problems - Chapter 9 Income-Producing Properties: Leases, Rents, and the Market for Space

Problem 9-1

a)

Discount rate
I. Net Lease with Steps:

Year	1	2
Net Rent	$\$ 15.00$	16.50
Average rent		$\$ 18.00$
Present value		$\$ 67.15$

Effective rent
\$67.15
\$17.72
II. Net Lease with $\mathbf{1 0 0 \%}$ CPI

Adjustment:

Year	1	2
Exp. CPI	$\$ 16.00$	3.00%
Net Rent		16.48
		$\$ 16.99$
Average rent		$\$ 64.04$

Effective rent \$16.89

III. Gross Lease

Year
Gross rent
Less: expenses
Net rent

Average rent
Present value
Effective rent

IV. Gross Lease with Expense
Stop at $\$ \mathbf{9 . 0 0}$ and CPI
Adjustment:

Adjustment:

Year	1	2	3	4	5
Exp. CPI		3.00%	3.00%	3.00%	3.00%
Gross rent	$\$ 22.00$	$\$ 22.66$	$\$ 23.34$	$\$ 24.04$	$\$ 24.76$
Less: expenses	$\$ 9.00$	10.00	11.00	12.00	13.00
Plus: reimbursement	0.00	1.00	2.00	3.00	4.00
Net rent	13.00	13.66	14.34	15.04	15.76
Average rent		$\$ 14.36$			
Present value	$\$ 53.94$				
Effective rent	$\$ 14.23$				

b) With the first type of lease, the tenant bears the risk of any unexpected change in operation expense. For the lessor, although the lease includes a step-up, higher than anticipated inflation could erode the real value of the rental income.

The second alternative includes a CPI adjustment rather than fixed step-ups. The risk of unexpected inflation is shifted to the lessee.

The third alternative is a gross lease. This is much riskier for the lessor than any of the net leases. The lessor bears the risk if operating expenses differ from what is expected.

The fourth one is a gross lease that combines a CPI adjustment with an expense stop. This shifts the risk of any increases in expenses to the tenant, while retaining any decrease in expenses.

Overall, if we rank the alternatives in terms of risk to the lessor, from the least risky to the most risky, the order should be: Gross Lease with Expense Stop and CPI Adjustments, Net Lease with CPI Adjustments, Net Lease with Steps and Gross Lease. That is: $4<2<1<3$.
c) Based on the analysis in (b), we might expect the effective rents for the four alternatives should exhibit the same order, from the least to the most risky to the lessor: $4<2<1<3$. As the results showed in (a), the effective rents for four alternatives do rank the same way. The one with the most risk is also the one that offers the greatest effective rent.

Problem 9-2

(d)Total Rentable Area : 225,000

Rentable and Common area: 255,000 $=\quad 225,000+30,000$
Total Load Factor : $1.27 \quad=\quad 1.12 \times 255,000 / 225,000$
Rentable area: 6,350
$=\quad 1.27 \mathrm{x} \mathrm{5,000}$
$\begin{array}{cccc}\text { (e) Total Rent for the Tenant } & = & \text { Rent per sq. ft. of Rentable Area x Rentable Area } \\ \$ 190,500 & = & \$ 30.00 & \times 6,350\end{array}$

Problem 9-3

(a) Yes Atrium's $\$ 24$ rent psf with move in allowance and TI is justified because it results in a greater effective rent per square foot than ACME's proposal.

Acme's proposal - rentable area $\mathbf{2 0 , 0 0 0}$ sq. ft.

Year	1	2	3	4	5	
Net Rent		$\$ 20.00$	$\$ 21.00$	$\$ 22.00$	$\$ 23.00$	$\$ 24.00$
Present Value	$=\$ 82.68$					
Effective rent/square foot	$\$ 21.81$					

Atrium's proposal - rentable area $\mathbf{2 0 , 0 0 0}$ sq. ft.

Year		1		2	3	4	5	
Net Rent		$\$$	24.00	25.00	$\$$	26.00	$\$ 27.00$	$\$ 28.00$
Present Value	$=\$ 97.84$							
TI	$-\$ 5.00$							
Moving Allow	$-\$ 2.50$							
Net Present Value	$\$ 90.34$							
Effective rent/square foot	$=\$ 23.83$							

Problem 9-3

(b) Atrium should not agree to lease buyout because it gives even lesser effective rent per square feet than both of the proposals in (a).

Year	1	2	3	4	5
Net Rent	$\$ 23.00-\$ 15.00$ (buyout)	$=\$ 8.00$	$\$ 24.00$	$\$ 25.00$	$\$ 26.00$

Present Value $=\$ 80.41$
Effective rent/square foot $=\$ 21.21$
Problem 9-4
In-line occupied area $=1,300,000$ square feet
Common Area $=$ Total area - Anchor tenant occupied area - In-line occupied area $=700,000$ square feet
Total Maintenance cost $=$ common area $*$ maintenance cost $\mathrm{psf}=700,000 * \$ 8=\$ 5,600,000$
Anchor contribution to CAM $=\$ 2$ per s.f. x 800 s.f. $=\$ 1,600,000$
CAM(Additional rent per square feet covered by in-line tenant) = (total maintenance cost - anchor contribution) / In-line occupied area $=(\$ 5,600,000-\$ 1,600,000) / 1,300,000=\$ 3.08$ per square feet

In line tenants would have to pay $\$ 3.08$ per s.f. in CAM charges, plus their base rent per square foot of rentable area.

Problem 9-5

(A) Option A is best because it gives higher effective rent psf. See the calculations below

Option A

Year	1	2	3	4	5
Base Rent	$\$ 25.00$	$\$ 26.00$	$\$ 27.00$	$\$ 28.00$	$\$ 29.00$
CAM	$\$ 3.00$	3.18	3.37	3.57	$\$ 3.79$
Net Rent	$\$ 28.00$	29.18	$\$ 30.37$	$\$ 31.57$	$\$ 32.79$
Present Value	=NPV(10\%,Rent_each_year)	$\$ 114.31$			
Effective rent/square foot	$\$ 31.71$				

Option B

Year	1		2	3	4	5
Base Rent	\$23.00		\$24.00	\$25.00	\$26.00	\$27.00
CAM	\$ 3.00		\$ 3.18	3.3708	3.57	3.79
Net Rent	\$26.00		\$27.18	\$28.37	\$29.57	\$30.79
Sales	\$850,000.000		935000	1028500	1131350	124485
Overage Rent	\$ 0 -		\$2,800	\$10,280	\$18,508	\$27,559
PV of Net Rent		= NPV(10\%,Ret_each_year)		\$ 1,013,396.12		
PV of Overage Rent		= NPV(10\%,overage rent)		\$ 36,949.02		
PV of Total Rent Revenue		= Net Rent + Overage rent)		\$ 1,050,345.14		
Effective rent/square foot		= Effective rent/Rentable_ area		\$ 29.14		

(B) Even when sales is expected to grow by 20% per year, option A is still better than option B because it gives effective rent of $\$ 31.71$ compared to effective rent of $\$ 30.73$ for option B.

Year		$\mathbf{1}$	$\mathbf{2}$		$\mathbf{3}$		$\mathbf{4}$	
$\mathbf{5}$								
Base Rent		$\$ 23.00$	$\$$	24.00	$\$$	25.00	$\$$	26.00

Calculate Effective Rent:		
PV of Net Rent	= NPV (10\%, Rent_each_year)	$\$ 1,013,396.12$
PV of Overage Rent	= NPV (10\%, Overage Rent)	$\$ 94,176.20$
PV of Total Rent Revenue	= Net Rent + Overage Rent	$\$ 1,107,572.32$
Effective rent/square foot	$=$ Effective rent/Rentable_area)	$\$$

Problem 9-6 (see notes A-E below for explanation)

Gross Potential Income (A)	$1,620,000$	
Loss to Lease (B)	7,950	
Vacancy \& Collection Loss (C)		128,160
Net Rental Income	$1,483,890$	
Recoveries (D)	220,800	$\frac{420,800}{1,904,690}$
Other Income	200,000	893,200
Total Income		$1,011,490$
Operating Expenses (E)		
NOI	100,000	350,000
Recurring Expenses	250,000	661,490

Notes A-E

(A) $1^{\text {st }} 6$ months	2nd 6 months	Total
40 units @ \$550@ 6 mos = \$132,000	@ $560=134,400$	
80 units @ 600@ 6 mos = 288,000	@ 610 = 292,800	
80 units @ 800 @ 6 mos = 384,000	@ $810=388,800$	
Total \$804,000	816,000	\$1,620,000
(B) 10 units * (550-500) 9 mos $=4,500$		
20 units * (600-580) $10 \mathrm{mos}=4,000$		
10 units * (805-800) $11 \mathrm{mos}=\underline{(550)}$		
\$7,950		
$1^{\text {st }} 6 \mathrm{mos}$	$2^{\text {nd }} 6 \mathrm{mos}$	
(C) 4 units * $550 * 6=13,200$	4 units * 560 * $6=13,440$	
6 units * $600 * 6=21,600$	6 units * $610 * 6=21,960$	
$\underline{6}$ units * $800 * 6=\underline{28,800}$	$\underline{6}$ units $* 810 * 6=\underline{29,160}$	
16 63,600	16 64,560	128,160
(D) 184 units @ 100 @ 12 mos = 220,800		
(E) 184 units @ $400 @ 12$ mos + \$10,000 apt. locator $=893,200$		

