CHAPTER 9

BREAK-EVEN POINT AND COST-VOLUME-PROFIT ANALYSIS

11. a. Break-even in units $=\$ 90,000 \div(\$ 70-\$ 40)=3,000$ units
b. In dollars break-even $=3,000 \times \$ 70=\$ 210,000$
12. a. Break-even point in rings $=\$ 345,000 \div(\$ 600-\$ 300)=1,150$
b. Break-even point in sales dollars $=1,150 \times \$ 600=\$ 690,000$
c. Break-even point $\$ 345,000 \div(\$ 600-\$ 306)=1,174$ rings $($ rounded $)$
d. Break-even point would be $\$ 339,000 \div(\$ 600-\$ 300)=1,130$ rings
13. a. Break-even in units is $\$ 260,000 \div(\$ 1,800-\$ 1,000)=325$ garden sheds.
b. To earn a pre-tax profit of $\$ 200,000=(\$ 260,000+\$ 200,000) \div \$ 800=575$ garden sheds
c. To earn a pre-tax profit of $\$ 280,000=(\$ 260,000+\$ 280,000) \div \$ 800=675$ garden sheds
14. a. Contribution margin per unit $=$ Sales less variable costs
$\$ 180-(\$ 30+\$ 25+\$ 17)=\$ 108$
b. Contribution margin ratio $=$ Contribution margin \div Sales $\$ 108 \div \$ 180=60 \%$
c. Break-even in units is fixed costs \div Contribution margin per unit $\$ 62,640 \div \$ 108=580$ units
d. Break-even in dollars is fixed costs \div Contribution margin ratio $\$ 62,640 \div 0.60=\$ 104,400$
e. To earn $\$ 51,840$ in pre-tax profit, Austin Automotive must sell: $(\$ 62,640+\$ 51,840) \div \$ 108=1,060$ units
15. a. Contribution margin per unit $=$ Sales less variable costs
$\$ 180-(\$ 30+\$ 25+\$ 17)=\$ 108$
b. Contribution margin ratio $=$ Contribution margin \div Sales $\$ 108 \div \$ 180=60 \%$
c. Break-even in units is fixed costs \div Contribution margin per unit $\$ 62,640 \div \$ 108=580$ units
f. Break-even in dollars is fixed costs \div Contribution margin ratio $\$ 62,640 \div 0.60=\$ 104,400$
g. To earn $\$ 51,840$ in pre-tax profit, Austin Automotive must sell: $(\$ 62,640+\$ 51,840) \div \$ 108=1,060$ units
16. a. Convert after-tax to pre-tax profit: $\$ 182,000 \div(1-0.35)=\$ 280,000$ The number of garden sheds that must be sold to generate $\$ 280,000=$ $(\$ 260,000+\$ 280,000) \div \$ 800=675$ garden sheds.
b. Let $\mathrm{R}=$ revenue; then $0.08 \mathrm{R}=$ After-tax income desired

Before-tax income $=0.08 \mathrm{R} \div(1-0.35)=0.123 \mathrm{R}$
Revenue - Variable costs - Fixed costs $=$ Income before tax
Let $\mathrm{X}=$ Units sold
$\mathrm{SP}(\mathrm{X})-\mathrm{VC}(\mathrm{X})-\mathrm{FC}=$ Income before tax
$\$ 1,800 \mathrm{X}-\$ 1,000 \mathrm{X}-\$ 260,000=0.123(\$ 1,800) \mathrm{X}$
$\$ 800 \mathrm{X}-\$ 260,000=\$ 221.4 \mathrm{X}$
$\$ 578.6 \mathrm{X}=\$ 260,000$
$X=450$ units (rounded) sold to earn 8 percent of revenue after tax
Amount of revenue $=450 \times \$ 1,800=\$ 810,000$

Check: $\quad \$ 810,000 \times 0.08=\$ 64,800$ after-tax income needed (round to $\$ 65,000$) $\$ 64,800 \div 0.65=\$ 99,692$ before-tax income (round to $\$ 100,000) \$ 1,800(450)-\$ 1,000(450)-\$ 260,000=\$ 100,000$
(before-tax income)

$$
\begin{aligned}
& \$ 100,000-0.35(\$ 100,000)=\$ 100,000-\$ 35,000=\$ 65,000 \\
& \$ 65,000 \div \$ 810,000=8 \%
\end{aligned}
$$

18. a. Convert the after-tax income to pre-tax desired income:

$$
\$ 135,800 \div(1-0.30)=\$ 194,000
$$

The number of units required to earn an after-tax profit of $\$ 135,800$:
$(\$ 62,640+\$ 194,000) \div \$ 108=2,376.3$ or 2,376 units
b. Convert the after-tax to pre-tax profit:
$\$ 7.20 \div \$ 180=0.04$, or $4 \% ; 0.04 \div(1-0.30)=5.7 \%$ of sales
A pre-tax return on sales of 5.7 percent is required to generate an after-tax profit of $\$ 7.20$ per unit
Let $\mathrm{R}=$ the Level of revenue that generates a pre-tax return of 5.7% :
Variable costs $=(\$ 30+\$ 25+17) \div \$ 180=0.4$, or 0.4 R
$\mathrm{R}-\$ 62,640-0.4 \mathrm{R}=0.057 \mathrm{R}$
$0.543 \mathrm{R}=\$ 62,640$
$\mathrm{R}=\$ 115,359$
$\$ 115,359 \div \$ 180=640.88$ or 641 units (rounded)
19. Let $Y=$ Level of sales generating income equal to 30% of sales, then:

$$
\begin{aligned}
\mathrm{Y}-0.60 \mathrm{Y}-(\$ 25,000 \text { per month } \times 12 \text { months }) & =0.30 \mathrm{Y} \\
0.10 \mathrm{Y} & =\$ 300,000 \\
\mathrm{Y} & =\$ 3,000,000
\end{aligned}
$$

Since existing sales are $\$ 2,250,000$, sales would need to increase by $\$ 3,000,000-$ $\$ 2,250,000=\$ 750,000$.
20. a. First, convert the desired after-tax income to a pre-tax desired income:

$$
\$ 600,000 \div(1-0.40)=\$ 1,000,000
$$

Note that total variable costs per unit $=\$ 3,000$, and total fixed costs $=$ $\$ 370,000$.

Next, let P represent the number of golf carts that must be sold to generate $\$ 1,000,000$ in pre-tax income:

$$
\begin{aligned}
\$ 5,000 \mathrm{P}-\$ 3,000 \mathrm{P}-\$ 370,000 & =\$ 1,000,000 \\
\$ 2,000 \mathrm{P} & =\$ 1,370,000 \\
& =685 \text { golf carts }
\end{aligned}
$$

b. Find after-tax equivalent of $20 \%: 20 \% \div(1-0.40)=33.33 \%$

Variable costs as a percentage of sales: $\$ 3,000 \div \$ 5,000=60 \%$
Let $\mathrm{R}=$ Level of revenue that generates a pre-tax return of 33.33% :

$$
\begin{aligned}
\mathrm{R}-0.6 \mathrm{R}-\$ 370,000 & =0.3333 \mathrm{R} \\
0.0667 \mathrm{R} & =\$ 370,000 \\
\mathrm{R} & =\$ 5,547,226
\end{aligned}
$$

Proof: Sales
Variable costs (60\%)
Contribution margin
Fixed costs
Income before tax
Income tax (40\%)
Net income

$$
\$ 1,109,334 \div \$ 5,547,226=20 \%
$$

\$ 5,547,226
(3,328,336)
\$ 2,218,890
$(370,000)$
\$ 1,848,890
$\begin{array}{r}(739,556) \\ \hline\end{array}$
$\$ 1,109,334$
22. a. $\$ 1,450 \div \$ 0.50=2,900$ passengers per day
i. Break-even: $\$ 2,000 \div 2,900=\$ 0.69$ (rounded) per passenger

Earn $\$ 250:(\$ 2,000+\$ 250) \div 2,900=\$ 0.78$ (rounded)
ii. Total variable cost $=\$ 2,000-(\$ 2,000 \times 0.80)=\$ 400$

Variable cost per passenger $=\$ 400 \div 2,900=\$ 0.14$ (rounded)
Profit if fare is $\$ 0.60=(2,900 \times 0.90 \times \$ 0.60)-(2,900 \times 0.9 \times \$ 0.14)-$ $\$ 1,600=\(399.40)
Current loss $=\$ 1,450-\$ 2,000=\(550)
County will be better off by $\$(399.40)-(\$ 550)=\$ 150.60$.
iii. At a fare of $\$ 0.70$:
$(2,900 \times \$ 0.70 \times 0.95)-(2,900 \times \$ 0.14 \times 0.95)-\$ 1,600=\(57.20)
The county would incur a slight loss at a fare of $\$ 0.70$.
At a fare of \$0.90:
$(2,900 \times \$ 0.90 \times 0.90)-(2,900 \times \$ 0.14 \times 0.90)-\$ 1,600=\$ 383.60$
The company would first make a profit when the fare is set at $\$ 0.90$.
iv. Increasing volume will help improve profitability only if the volume change increases total contribution margin. Because an increase in volume can often
be achieved only with a decrease in price, the change in contribution margin may be negative rather than positive.
23. a. Current sales volume for both companies $=\$ 2,000,000 \div \$ 40=50,000$

New selling price $\$ 40-(0.3 \times \$ 40)=\$ 28$; Variable costs $=\$ 1,400,000 \div$ $50,000=\$ 28$
Ainsley: $(50,000 \times 1.60 \times \$ 28)-(50,000 \times 1.60 \times \$ 28)-\$ 0=\$ 0$
Bard: $(50,000 \times 1.60 \times \$ 28)-(50,000 \times 1.60 \times \$ 0)-\$ 1,400,000=\$ 840,000$
This strategy is best used by Bard.
b. New selling price: $\$ 40 \times 1.3=\$ 52$

Ainsley: $(50,000 \times 0.85 \times \$ 52)-(50,000 \times 0.85 \times \$ 28)-\$ 0=\$ 1,020,000$
Bard: $(50,000 \times 0.85 \times \$ 52)-(50,000 \times 0.85 \times \$ 0)-\$ 1,400,000=\$ 810,000$
This strategy is best used by Ainsley.
c. Ainsley: $(65,000 \times \$ 40)-(65,000 \times \$ 28)-\$ 200,000=\$ 580,000$

Bard: $(65,000 \times \$ 40)-(65,000 \times \$ 0)-\$ 1,600,000=\$ 1,000,000$
This strategy is best used by Bard.
24. a. CM per unit of sales $\operatorname{mix}=(\$ 3 \times 8)+(1 \times \$ 6)=\$ 30$

Break-even $=\$ 180,000 \div \$ 30=6,000$ units of sales mix, or 18,000 wallets and 6,000 money clips
Total revenue $=(18,000 \times \$ 30)+(6,000 \times \$ 15)=\$ 630,000$
b. Sales mix units $=(\$ 180,000+\$ 150,000) \div \$ 30=11,000=33,000$ wallets and 11,000 money clips
Total revenue $=(33,000 \times \$ 30)+(11,000 \times \$ 15)=\$ 1,155,000$
c. Equivalent pre-tax profit $=\$ 150,000 \div(1-0.40)=\$ 250,000$

Sales mix units $=(\$ 180,000+\$ 250,000) \div \$ 30=14,333.33=43,000$ wallets and 14,333 money clips
Total revenue $=(43,000 \times \$ 30)+(14,333 \times \$ 15)=\$ 1,504,995$
d. Units of sales mix $=\$ 1,155,000 \div[(5 \times \$ 30)+(2 \times \$ 15)]=6,417$ (rounded $)=$ 32,085 wallets and 12,834 money clips
Income $=(32,085 \times \$ 8)+(12,834 \times \$ 6)-\$ 180,000=\$ 153,684$
The sales mix shifted such that the ratio of wallets to money clips declined, and the break-even point was reduced because money clips have a higher contribution margin ratio than money clips. Hence, at a sales level of $\$ 1,155,000$, more contribution margin is generated at the actual sales mix than at the planned sales mix.
25. a. Fixed costs \div Contribution margin $=$ Break-even point in units
$\$ 1,080,000,000 \div[(3 \times \$ 300)+(5 \times \$ 700)+(2 \times \$ 1,000)]=$ $\$ 1,080,000,000 \div \$ 6,400=168,750$ bags

Mod $=3 \times 168,750=506,250$ units $\times \$ 2,200=$
\$1,113,750,000
Rad $=5 \times 168,750=843,750$ units $\times \$ 3,700=$ X-treme $=2 \times 168,750=337,500$ units $\times \$ 6,000=$ Revenue to break-even
b. Convert after-tax to pre-tax income. $\$ 1,000,000,000 \div(1-0.5)=\$ 2,000,000,000$ $(\$ 2,000,000,000+\$ 1,080,000,000) \div \$ 6,400=481,250$ bags
$\operatorname{Mod}=3 \times 481,250=1,443,750$ units $\times \$ 2,200=\$ 3,176,250,000$ Rad $=5 \times 481,250=2,406,250$ units $\times \$ 3,700=$ X-treme $=2 \times 481,250=962,500$ units $\times \$ 6,000=$ Total revenue needed

8,903,125,000
5,775,000,000
\$17,854,375,000
c. This change will increase the number of units required to break even because fewer units of Rad and X-treme, which have the greatest contribution margin, are being sold and more units of Mod, which has the lowest contribution margin, are being sold.

Scooter	Contribution Margin		
Mod	$5 \times \$ 300$	$=$	$\$ 1,500$
Rad	$4 \times \$ 700$	$=$	2,800
X-treme	$1 \times \$ 1,000$	$=$	$\underline{1,000}$
Total			$\underline{\$ 5,300}$

Now the contribution margin is $\$ 5,300$ per bag, which is less than the contribution margin per bag of $\$ 6,400$ in (a) above.
d. If Green Rider sells more of its scooters with the greatest contribution margin (X-treme) and fewer of the scooters with the lowest contribution margin (Mod), then fewer scooters would be needed to be sold to break even.
26. a. Break-even is $\$ 264,000 \div(\$ 9.60-\$ 7.60)=132,000$ bushels

132,000 bushels $\times \$ 9.60=\$ 1,267,200$
Bushels per acre $=132,000 \div 1,200=110$ bushels per acre
b. Bushels sold - Break-even bushels $=$ Margin of safety
$174,000-132,000=42,000$ bushels $(174,000 \times \$ 9.60)-\$ 1,267,200=\$ 403,200$ $\$ 403,200 \div \$ 1,670,400=24.1 \%$
31. a. Each "bag" contains one unit of liquid and two units of spray. Thus, each bag generates contribution margin of: $(1 \times \$ 10)+(2 \times \$ 5)=\$ 20$.

The break-even point would be: $\$ 100,000 \div \$ 20=5,000$ bags. Since each bag contains two units of spray, at the break-even point $5,000 \times 2$ or 10,000 units of spray must be sold.
i. At the break-even point, Total $\mathrm{CM}=$ Total FC ; and the CM per unit would be $\$ 1,600 \div 4,000=\$ 0.40$. If one unit is sold beyond the break-even point, net income would rise by $\$ 0.40$.
ii. $\quad \$ 10 \mathrm{X}-0.40(\$ 10 \mathrm{X})-\$ 216,000=0.25(\$ 10 \mathrm{X})$

$$
\begin{aligned}
\$ 3.50 \mathrm{X} & =\$ 216,000 \\
\mathrm{X} & =61,715 \text { units (rounded) }
\end{aligned}
$$

iii. In units: $3,200-2,800=400$ units

In dollars: 400 units $\times \$ 65$ per unit $=\$ 26,000$

Percentage: $\$ 26,000 \div(\$ 65 \times 3,200)=12.5 \%$
38. a. Total variable cost $=\$ 28+\$ 12+\$ 8=\$ 48$

Contribution margin per unit $=\$ 70-\$ 48=\$ 22$ per unit
Contribution margin ratio $=\$ 22 \div \$ 70=31.4 \%$ (rounded)
Total fixed costs $=\$ 10,000+\$ 24,000=\$ 34,000$
Break-even point in units $=\$ 34,000 \div \$ 22$ per unit $=1,545$ units (rounded)
Break-even point in dollars $=\$ 34,000 \div 0.314=\$ 108,280$ (rounded)
b. $(\$ 40,000+\$ 34,000) \div 0.314=\$ 235,669$ (rounded)
$(\$ 235,669 \div \$ 70)=3,367$ units (rounded)
c. Convert after-tax earnings to pre-tax earnings: $\$ 40,000 \div(1-0.40)=\$ 66,667$

Required sales $=(\$ 66,667+\$ 34,000) \div 0.314=\$ 320,596$ (rounded)
$\$ 320,596 \div \$ 70=4,580$ units (rounded)
d. Convert the after-tax rate of earnings to a pre-tax rate of earnings:
$[20 \% \div(1-0.40)]=33.33 \%$
Because the $\mathrm{CM} \%$ is only 31.4%, no level of sales would generate net income equal to, on a pre-tax basis, 33.33% of sales.
e. Variable cost savings $(5,000 \times \$ 6.00) \quad \$ 30,000$

Additional fixed costs
$(40,000)$
Decrease in profit
\$(10,000)

The company should not buy the new sewing machine.
f. Existing CM per unit $=\$ 22$

CM under proposal $=(\$ 70 \times 0.90)-\$ 48=\$ 15$
Total CM under proposal $(3,000 \times 1.30 \times \$ 15) \quad \$ 58,500$
Existing CM (3,000 $\times \$ 22$) $(66,000)$
Change in CM
Change in fixed costs
\$ $(7,500)$

Change in net earnings before taxes
$(10,000)$
(17,500)
No, these two changes should not be made because they would lower pre-tax profits by $\$ 17,500$ relative to existing levels.
41. a. Total sales price per bag:

Commercial $(\$ 5,600 \times 1) \quad \$ 5,600$
Residential (\$1,800 $\times 3$) $\quad 5,400$
\$11,000
Total variable costs per bag:
Commercial $(\$ 3,800 \times 1) \quad \$ 3,800$
Residential $(\$ 1,000 \times 3) \quad 3,000$
$(6,800)$
Total contribution margin
$\$ 4,200$
Break-even point in units $=\$ 8,400,000 \div \$ 4,200=2,000$ bags
Commercial: $2,000 \times 1=2,000$ mowers
Residential: $2,000 \times 3=6,000$ mowers
b. $(\$ 8,400,000+\$ 1,260,000) \div \$ 4,200=2,300$ bags

Commercial: $2,300 \times 1=2,300$ mowers
Residential: $2,300 \times 3=6,900$ mowers
c. Pre-tax equivalent of $\$ 1,008,000$ after-tax $=\$ 1,008,000 \div(1-0.40)=\$ 1,680,000$ $(\$ 8,400,000+\$ 1,680,000) \div \$ 4,200=2,400$ bags

Commercial: $2,400 \times 1=2,400$ mowers
Residential: $2,400 \times 3=7,200$ mowers
d. Let $\mathrm{X}=$ number of bags that must be sold to produce pre-tax earnings
equaling 12 percent of sales revenue, then:
$\$ 4,200 \mathrm{X}-\$ 8,400,000=0.12(\$ 11,000 \mathrm{X})$
$\mathrm{X}=2,917$ bags (rounded)
Commercial: $2,917 \times 1=2,917$ mowers
Residential: $2,917 \times 3=8,751$ mowers
e. Convert the after-tax return to a pre-tax rate of return:
$0.08 \div(1-0.40)=13 \%$ (rounded)
$\$ 4,200 \mathrm{X}-\$ 8,400,000=0.13(\$ 11,000 \mathrm{X})$
$\mathrm{X}=3,032$ bags (rounded)
Commercial: $3,032 \times 1=3,032$ mowers
Residential: $3,032 \times 3=9,096$ mowers
42. a.

	$\underline{\text { Ducks }}$	Ducklings
Sales	$\$ 24.00$	$\$ 12.00$
Variable costs	$\underline{(12.00})$	(8.00)
Contribution margin	$\$ 12.00$	$\$ 4.00$
Mix	$\underline{\$ 1}$	$\frac{\times 5}{\$ 12.00}$
Total contribution margin	$\underline{\$ 20.00}$	
The average contribution margin ratio is $\$ 32 \div 84=38.1 \%$ (rounded)		

b. Break-even point $=\$ 288,000 \div \$ 32=9,000$ bags per year or 750 bags a month Ducks: $750 \times 1=750$ per month
Ducklings: $750 \times 5=3,750$ per month
c. Target profit is $\$ 96,000 \times 12=\$ 1,152,000$
$(\$ 288,000+\$ 1,152,000) \div \$ 32=45,000$ bags per year or 3,750 bags a month.
Ducks: $3,750 \times 1=3,750$ per month
Ducklings: $3,750 \times 5=18,750$ per month
d.

	$\underline{\text { Ducks }}$	Ducklings
Sales	$\$ 24.00$	$\$ 12.00$
Variable costs	$\underline{(12.00})$	$\underline{(8.00})$
Contribution margin	$\$ 12.00$	$\$ 4.00$
Mix	$\underline{\times 1}$	$\underline{\times 9}$
Total contribution margin	$\underline{\$ 12.00}$	$\underline{\underline{\$ 36.00}}$

Target profit after tax is $\$ 31,680$.
Pre-tax profit is $\$ 31,680 \div(1-0.40)=\$ 52,800$ monthly or $\$ 633,600$ per year.
Break-even $=(\$ 633,600+\$ 288,000) \div \$ 48=19,200$ bags per year, or 1,600 per month

Units Revenue

Ducks $(19,200 \times \$ 24)$	19,200	$\$ 460,800$
Ducklings $(19,200 \times 9 \times \$ 12)$	172,800	$\underline{2,073,600}$
Total	$\underline{\$ 2,534,400}$	
e.	$[\$ 288,000+(\$ 8,500 \times 12)] \div[\$ 12+(\$ 8 \times 5)]$	
	$(\$ 288,000+\$ 102,000) \div \$ 52=7,500$	

Yes, the company would want to make the change because the break-even point is reduced from $9,000 \mathrm{mix}$ units to $7,500 \mathrm{mix}$ units.

