CHAPTER 7

STANDARD COSTING AND VARIANCE ANALYSIS

22. a. Total purchases $=A P \times \mathrm{AQ}_{\mathrm{p}}=\$ 0.13 \times 115,000=\$ 14,950$
b. Material price variance $=\left(\mathrm{AP} \times \mathrm{AQ}_{\mathrm{p}}\right)-\left(\mathrm{SP} \times \mathrm{AQ}_{\mathrm{p}}\right)$
$=\$ 14,950-(\$ 0.14 \times 115,000)$
$=\$ 14,950-\$ 16,100$
$=\$ 1,150 \mathrm{~F}$
b. Material quantity variance $=\left(S P \times A Q_{u}\right)-(S P \times S Q)$

$$
=(\$ 0.14 \times 100,000)-(\$ 0.14 \times 97,900)
$$

$=\$ 14,000-\$ 13,706$
$=\$ 294 \mathrm{U}$
23. a. $\$ 10,080 \div 4,200=\$ 2.40$ per quart
$S Q=1,000$ units $\times 4$ quarts $=4,000$
$A Q \times A P$
$\mathrm{AQ} \times \mathrm{SP}$
SQ \times SP
$4,200 \times \$ 2.40$
$4,200 \times \$ 2.50$
$4,000 \times \$ 2.50$
$\$ 10,080$
$\$ 10,500$
$\$ 10,000$
Material Price Variance Material Usage Variance
b. The price variance would be based on the quantity of material purchased, while the usage variance would be based on the quantity of material used in production. Because the usage variance is based on the same quantities as in (a), it does not change.
$\mathrm{AQ}_{\mathrm{p}} \times \mathrm{AP}$
$6,000 \times \$ 2.40$
\$14,400
$A Q_{p} \times S P$
$6,000 \times \$ 2.50$
$\$ 15,000$
Material Price Variance
c. Raw Material Inventory

15,000
Material Price Variance 600
Accounts Payable 14,400
$\begin{array}{crr}\text { Work in Process Inventory } & 10,000 & \\ \text { Material Usage Variance } & 500 & \\ \text { Raw Material Inventory } & & 10,500\end{array}$
d. The purchasing agent would have responsibility for the price variance and the production manager would have responsibility for the usage variance.
(CPA adapted)
24. a. Material purchase price variance $=(\$ 2.10-\$ 1.40)=\$ 0.70 \mathrm{~F}$ variance per pound; $\$ 0.70 \times 100,000 \mathrm{lbs} .=\$ 70,000 \mathrm{~F}$
b. June $\quad 3,000 \times 5=15,000$ SQ; $\$ 2.10 \times(16,400-15,000)=\$ 2,940 \mathrm{U}$

July $\quad 3,400 \times 5=17,000$ SQ; $\$ 2.10 \times(17,640-17,000)=\$ 1,344 \mathrm{U}$
Aug. $\quad 2,900 \times 5=14,500$ SQ; $\$ 2.10 \times(14,950-14,500)=\$ 945 \mathrm{U}$
Sept. $2,500 \times 5=12,500$ SQ; $\$ 2.10 \times(13,100-12,500)=\$ 1,260 \mathrm{U}$
c. It is possible that the material purchased had been damaged in some way or became tainted for use while being stored at the bankrupt vendor's location. (Bell Inc. should carefully assess the effect of this material's usage on labor efficiency to see if there is an unfavorable variance there.)
25. a. \& b.

Purchasing agent's responsibility:
Material price variance $=\left(A P \times A Q_{p}\right)-\left(S P \times A Q_{p}\right)$
$=(\$ 0.64 \times 25,600)-(\$ 0.70 \times 25,600)$
$=\$ 16,384-\$ 17,920$
$=\$ 1,536 \mathrm{~F}$
Production supervisor's responsibility:
Standard quantity of materials $=600 \times 35 \mathrm{lbs} .=21,000$
Material quantity variance $=\left(S P \times \mathrm{AQ}_{\mathrm{u}}\right)-(\mathrm{SP} \times \mathrm{SQ})$

$$
\begin{aligned}
& =(\$ 0.70 \times 21,400)-(\$ 0.70 \times 21,000) \\
& =\$ 14,980-\$ 14,700 \\
& =\$ 280 \mathrm{U}
\end{aligned}
$$

c. Explanations offered should consider the pattern of the variances. The pattern is a favorable price variance and an unfavorable quantity variance. A favorable price variance could have been obtained because the material was acquired in a larger-than-normal quantity with a pricing discount. Or the material was acquired from a vendor having a distress sale. Another reason would be that the quality of the scrap iron was not as high as the quality usually purchased. If the latter is the case, it could have influenced the excessive material usage and waste. Alternatively, the quantity variance could be just inefficiency in the production process.
26. a. Standard hours $=5 \times 670=3,350$
b. Wage rate per hour $=\$ 60,407.50 \div 3,310=\$ 18.25$

27. a. Since the labor rate variance is favorable, the actual cost of direct labor is less (by $\$ 5,500$) than the standard cost. The standard cost is $\$ 80,500$.

$\$ 80,500 \div 10,000$ actual direct labor hours equals a standard rate of $\$ 8.05$.
b. Since the actual hours are 1,000 less than the standard, the efficiency variance is 1,000 hours $\times \$ 8.05=\$ 8,050 \mathrm{U}$.

28. a. Actual cost $=$ Standard cost + Total unfavorable variance

$$
\begin{aligned}
& =(\$ 250 \times 350)+\$ 3,500 \\
& =\$ 87,500+\$ 3,500 \\
& =\$ 91,000
\end{aligned}
$$

b. Labor efficiency variance $=(\mathrm{SP} \times \mathrm{AH})-(\mathrm{SP} \times \mathrm{SH})$

$$
\begin{aligned}
& =(\$ 250 \times 330)-(\$ 250 \times 350) \\
& =\$ 82,500-\$ 87,500 \\
& =\$ 5,000 \mathrm{~F}
\end{aligned}
$$

c. Rate variance + Efficiency variance $=$ Total variance

Rate variance $+(-\$ 5,000 \mathrm{~F})=\$ 3,500 \mathrm{U}$
Rate variance $=\$ 3,500+\$ 5,000$
Rate variance $=\$ 8,500 \mathrm{U}$
d. Work in Process Inventory
87,500
Labor Rate Variance
8,500
Wages Payable
Labor Efficiency Variance

$$
91,000
$$

$$
5,000
$$

e. Because the favorable efficiency variance is coupled with an unfavorable rate variance, one explanation is that the firm used, on average, a more skilled mix of labor than it expected to use. For example, the firm may have used more senior auditors and managers than it intended to use. Without additional information on the original mix of employees and the actual mix of employees, no specific conclusions can be reached.
29.
Units produced
Standard hours per unit
Standard hours
Standard rate per hour
Actual hours worked
Actual labor cost
Labor rate variance
Labor efficiency variance

Case A:

Standard hours $=1,000 \times 3.5=3,500$

Case A		Case B		Case C
1,000	$\mathbf{1 , 0 0 0}$		240	
3.5	0.9	$\mathbf{2 . 5}$	1,500	
$\mathbf{3 , 5 0 0}$	900	600	$\mathbf{3 . 0}$	
$\$ 7.25$	$\mathbf{\$ 1 0 . 2 0}$	$\$ 10.50$	$\$ 7.00$	
3,400	975	$\mathbf{5 6 0}$	4,900	
$\mathbf{\$ 2 3 , 8 0 0}$	$\mathbf{\$ 8 , 9 7 0}$	$\$ 6,180$	$\$ 31,850$	
$\$ 850 \mathrm{~F}$	$\$ 975 \mathrm{~F}$	300 U	$\mathbf{\$ 2 , 4 5 0} \mathbf{~ F}$	
$\mathbf{7 2 5} \mathbf{F}$	$\$ 765 \mathrm{U}$	$\mathbf{\$ 4 2 0} \mathbf{F}$	$\$ 2,800 \mathrm{U}$	

$$
\begin{aligned}
\mathrm{LRV} & =\mathrm{AQ}(\mathrm{AP}-\mathrm{SP}) \\
-\$ 850 & =3,400(\mathrm{AP}-\$ 7.25) \\
-\$ 850 & =3,400 \mathrm{AP}-\$ 24,650 \\
\$ 23,800 & =3,400 \mathrm{AP} \\
\$ 7.00 & =\mathrm{AP}
\end{aligned}
$$

Actual labor cost $=\$ 7.00 \times 3,400=\$ 23,800$
$\mathrm{LEV}=\mathrm{SP}(\mathrm{AQ}-\mathrm{SQ})$
$\operatorname{LEV}=\$ 7.25(3,400-3,500)=\$ 7.25(-100)=\$ 725 \mathrm{~F}$
Case B:
Units produced $=900 \div 0.9=1,000$

$$
\begin{aligned}
\mathrm{LEV} & =\mathrm{SP}(\mathrm{AQ}-\mathrm{SQ}) \\
\$ 765 & =\mathrm{SP}(975-900) \\
\$ 765 & =\mathrm{SP}(75) \\
\$ 10.20 & =\mathrm{SP} \\
\mathrm{LRV} & =\mathrm{AQ}(\mathrm{AP}-\mathrm{SP}) \\
-\$ 975 & =975(\mathrm{AP}-\$ 10.20) \\
-\$ 975 & =975 \mathrm{AP}-\$ 9,945 \\
\$ 8,970 & =975 \mathrm{AP} \\
\$ 9.20 & =\mathrm{AP}
\end{aligned}
$$

Actual labor cost $=\$ 9.20 \times 975=\$ 8,970$
Case C:
Standard hours $=600 \div 240=2.5$
$(\mathrm{AP} \times \mathrm{AQ})-\mathrm{LRV}=(\mathrm{SP} \times \mathrm{AQ})$
$\$ 6,180-\$ 300=\$ 5,880$
$\$ 5,880=\$ 10.50 \times \mathrm{AQ}$
$\$ 5,880 \div \$ 10.50=\mathrm{AQ}$
$\mathrm{AQ}=560$
LEV $=\mathrm{SP}(\mathrm{AQ}-\mathrm{SQ})$
$\operatorname{LEV}=\$ 10.50(560-600)=\$ 10.50(-40)=\$ 420 \mathrm{~F}$

Case D:

Actual labor rate $=\$ 31,850 \div 4,900=\$ 6.50$

$$
\begin{aligned}
\mathrm{LRV} & =\mathrm{AQ}(\mathrm{AP}-\mathrm{SP}) \\
\mathrm{LRV} & =\$ 31,850-(\$ 7 \times 4,900) \\
\mathrm{LRV} & =\$ 31,850-\$ 34,300 \\
\mathrm{LRV} & =\$ 2,450 \mathrm{~F} \\
\mathrm{LEV} & =(\mathrm{SP} \times \mathrm{AQ})-(\mathrm{SP} \times \mathrm{SQ}) \\
\$ 2,800 & =\$ 34,300-\$ 7 \mathrm{SQ} \\
-\$ 31,500 & =-\$ 7 \mathrm{SQ} \\
\mathrm{SQ} & =4,500
\end{aligned}
$$

Standard hours per unit $=4,500 \div 1,500=3$
30. a. Material price variance $=\$ 61,000-(\$ 3 \times 20,000)$

$$
\begin{aligned}
& =\$ 61,000-\$ 60,000 \\
& =\$ 1,000 \mathrm{U}
\end{aligned}
$$

Standard quantity of material $=3,900 \times 4.8=18,720$ gallons
Material quantity variance $=(\$ 3 \times 18,350)-(\$ 3 \times 18,720)$

$$
\begin{aligned}
& =\$ 55,050-\$ 56,160 \\
& =\$ 1,110 \mathrm{~F}
\end{aligned}
$$

b. Standard quantity of time $=3,900 \times 1 / 3$ hour $=1,300$ hours

c. Raw Material Inventory Material Price Variance Accounts Payable

Work in Process Inventory
Material Quantity Variance
Raw Material Inventory
Work in Process
Labor Rate Variance
Labor Efficiency Variance
Wages Payable

60,000.00
1,000.00

56,160.00
61,000.00

1,110.00
55,050.00
11,700.00
25.80
90.00

11,635.80
31. a. Actual material price $=\$ 83,300 \div 17,000=\$ 4.90$ per square yard

Material price variance: $\mathrm{AQ}_{\mathrm{p}}(\mathrm{AP}-\mathrm{SP})=17,000 \times(\$ 4.90-\$ 5.00)=\underline{\$ 1,700 \mathrm{~F}}$ Material usage variance: $\mathrm{SP} \times\left(\mathrm{AQ}_{\mathrm{u}}-\mathrm{SQ}\right)=\$ 5 \times(16,500-15,000)=\underline{\$ 7,500 \mathrm{U}}$
b. Raw Material Inventory

Accounts Payable

85,000

$$
83,300
$$

e. The material price variance is favorable. The purchasing agent may have purchased an optimum quantity with a negotiated price. It is also possible that the materials are of lower quality. This possibility is suggested by both the unfavorable material usage variance and the unfavorable labor efficiency variance. It is possible that the workers had difficulty working with the materials or that the inferior quality slowed down the machinery or resulted in defective units being produced. All of these factors would require additional materials to be used to complete the required production level. The unfavorable labor rate variance could have been the result of the company using more experienced workers, a tight labor market due to a strong economy or standards that had not been updated for a change in contractual wage rates negotiated in a union contract.
(CPA adapted)
32. a. Standard quantity of material $=2$ yards $\times 10,000$ shirts $=20,000$ yards

Standard labor time $=0.7$ hours $\times 10,000$ shirts $=7,000$ DLHs

c. The pattern is a favorable material price variance and an unfavorable material quantity variance. If the quality level of cotton is below the expected level, a favorable price variance would be incurred. However, the lower quality cotton could result in more waste and shrinkage during production and thus more materials yardage is required to make a t-shirt than expected.
d. The favorable labor rate variance is coupled with an unfavorable labor efficiency variance. One explanation is that the firm used, on average, a less skilled mix of labor than it expected to use and thus the average labor time per t-shirt was greater than expected. Additionally, the use of inferior quality material could also have contributed to the excess time taken to manufacture the shirts.
e. Material Price Variance 300

Cost of Goods Sold 60
Material Quantity Variance
To dispose of the material variances
Labor Rate Variance 794
Cost of Goods Sold 6,256
Labor Efficiency Variance
7,050
To dispose of the labor variances

