CHAPTER 3

PREDETERMINED OVERHEAD RATES, FLEXIBLE BUDGETS, AND ABSORPTION/VARIABLE COSTING

EXERCISES

- **11. a.** (1) At any level, the variable cost is \$2 per machine hour. Since four hours are needed to make one unit, the variable rate is \$8 per unit. At production of 10,000 units, the fixed rate is $325,000 \div 10,000$ or 322.50 per unit.
 - (2) At any level, the variable cost is \$2 per machine hour. At production of 10,000 units, the fixed rate per machine hour = $32.50 \div 4 = 8.125$ per machine hour.
- b. (1) Combined rate = \$8 + \$32.50 = \$40.50 per unit
 - (2) Combined rate = \$2 + \$8.125 = \$10.125 per unit
- c. At actual production of 11,000 units and applying OH on units of production:

	Expected =		Under/Over
	<u>Actual</u>	<u>Applied</u>	<u>Applied</u>
VOH (11,000 × \$8)	\$ 88,000	$(11,000 \times \$8) = \$88,000$	\$ 0
FOH	325,000	$(11,000 \times \$32.50) = 357,500$	32,500 overapp.

12. a. Applied VOH = $900 \times \$8 = \$7,200$

- b. Applied FOH = $900 \times $32.50 = $29,250$
- c. VOH: Actual VOH Applied VOH = \$7,500 \$7,200 = \$300 underapplied FOH: Actual FOH – Applied FOH = \$26,500 – \$29,250 = \$2,750 overapplied
- **14.** a. Jan. \$180,000 × 2.50 = \$450,000 Feb. \$165,000 × 2.50 = \$412,500 Mar. \$170,000 × 2.50 = \$425,000
 - b. Jan. Actual Applied = 440,000 450,000 =Feb. Actual – Applied = 420,400 - 412,500 =Mar. Actual – Applied = 421,000 - 425,000 =Total for quarter Total for quarter 510,000 overapplied 4,000 overapplied 6,100 overapplied
- **15.** a. $(\$600,400 + \$199,600) \div (10,000 + 40,000) = \$800,000 \div 50,000 = \$16.00$ per DLH
 - b. $(\$600,400 + \$199,600) \div (76,000 + 4,000) = \$800,000 \div 80,000 = \$10.00$ per MH
 - c. Assembly: \$600,400 ÷ 76,000 = \$7.90 per MH Finishing: \$199,600 ÷ 40,000 = \$4.99 per DLH
 - d. Overhead assigned using answer from (a): $1 \times \$16.00 = \16.00 Overhead assigned using answer from (b): $5 \times \$10.00 = \50.00 Overhead assigned using answer from (c): $(5 \times \$7.90) + (1 \times \$4.99)$

= \$39.50 + \$4.99 = \$44.49

21 a.

	<u>MHs</u>	<u>Total Cost</u> =	Variable Cost	+	Fixed Cost
High activity	34,000	\$12,200	\$5,440		\$6,760
Low activity	<u>31,000</u>	11,720	4,960		6,760
Differences	3,000	\$ 480			

Variable rate = $$480 \div 3,000 \text{ MHs} = 0.16 per MH High activity variable cost = $34,000 \times $0.16 = $5,440$ Low activity variable cost = $31,000 \times $0.16 = $4,960$ Fixed cost at high activity = \$12,200 - \$5,440 = \$6,760Fixed cost at low activity = \$11,720 - \$4,960 = \$6,760Budget formula: TC = FC + VC(X) TC = \$6,760 + \$0.16 MH

b. TC = \$6,760 + \$0.16(31,250) = \$6,760 + \$5,000 = \$11,760

22 . a.	Shipments Received	Cost of Reports
High activity	60	\$202
Low activity	<u>35</u>	142
Differences	25	\$ 60
Variable cost =	$60 \div 25 = 2.40$	
Fixed cost (high	point) = $202 - (60 \times 2.40) = 5$	\$58

$$v = \$58 + \$2.40X$$

- b. $y = $58 + ($2.40 \times 72)$ y = \$230.80
- c. The most significant problem is that 72 shipments is far larger than the largest number of shipments in the data used to develop the equation. Thus, 72 may be outside of the relevant range for the equation. Other concerns are those associated with use of the high-low method including only two of the seven data points were used to develop the equation.

23. a.	MHs	Total Cost	=	Variable Cost	+	Fixed Cost
High activity	9,000	\$ 880		\$(1,620)		\$2,500
Low activity	3,000	1,960		(540)		2,500
Differences	6,000	\$(1,080)				

Variable rate = $(1,080) \div 6,000$ MHs = (0.18) per MH

High activity variable $cost = 9,000 \times (0.18) = (1,620)$ Low activity variable $cost = 3,000 \times (0.18) = (540)$ Fixed cost at low activity = 1,960 - (540) = 2,500Total maintenance cost = 2,500 - 0.18 MH

b. The variable cost component is negative, which implies that, as the number of machine hours increases, the amount of maintenance costs declines. Such a relationship is implausible. One explanation that would account for the perceived inverse relationship would be that the company performs the maintenance chores

when there is idle time available. As business activity increases, less and less time is available to perform maintenance activities.

c. For a cost prediction formula to work effectively, a positive relationship between the activity measure and the cost pool is not required. Thus, the formula developed in (a) might function effectively. However, one cannot interpret the parameters of the model (-\$0.18, \$2,500) as variable and fixed costs, respectively.

24. a.			Total		Variable	e	Fixed
		MHs	<u>Cost</u>	=	Cost	+	Cost
	High activity	1,900	\$1,160		\$760		\$400
	Low activity	<u>1,250</u>	900		500		400
	Differences	650	\$ 260				
	Variable rate = $$26$ Cost formula: $y = $$	50 ÷ 650 MHs = 5400 + \$0.40 M	= \$0.40 p H	er MI	Η		
b.				1,32	25	1,500	1,675
	Variable utility cos	t @ \$0.40 per N	МН	\$ 5.	30	\$ 600	\$ 670
	Fixed utility cost	0		4	00	400	400
	Expected total utili	ty cost		<u>\$ 9.</u>	<u>30</u>	<u>\$1,000</u>	<u>\$1,070</u>
29 . a.	Ingredients			\$ 2	28,800		
	Labor			1	04,000		
	Variable overhead			1	97,600		
	Total variable co	ost		\$ 5	30,400		
	Divided by units			÷ 1	04,000		
	Variable cost per u	nit		<u>\$</u>	5.10		
	Total variable cost			\$ 5	30,400		
	Fixed overhead				98,800		
	Total cost			\$6	529,200		
	Divided by units			÷ 1	04,000		
	Absorption cost pe	r unit		<u>\$</u>	6.05		
b.	Variable cost of go	ods sold = 100 ,	$000 \times \$5$	5.10 =	\$510,0	00	
c.	Absorption cost of	goods sold $= 10$	00,000 ×	\$6.05	5 = \$60:	5,000	
d.	Ending inventory Ending inventory	(variable costin (absorption cos	(g) = 4,00 ting) = 4	00 × \$;000 ;	5.10 = × \$6.05	\$20,400 = \$24,2	00

e. Fixed overhead charged to expense (variable costing) = \$98,800 Fixed overhead charged to expense (absorption costing) = \$95,000

30. a.	Income – Variable costing	\$188,000
	Deduct increase in CGS [FOH out of inventory ($\$8 \times 9,600$)]	(76,800)
	Income – Absorption costing	<u>\$111,200</u>
b.	Income – Variable costing	\$188,000
	Add decrease in CGS [FOH inventoried ($\$ \times 3,000$)]	24,000
	Income – Absorption costing	<u>\$212,000</u>
32 . a.	Budgeted fixed overhead = $0.40 \times 100,000 = 40,000$	

b.	Actual (and budgeted) fixed overhead	\$40,000
	Applied fixed overhead $(45,000 \times \$0.40)$	18,000
	Underapplied fixed overhead (absorption)	<u>\$22,000</u>

There is no underapplied or overapplied fixed overhead under variable costing because fixed overhead is not applied to units of product.

c.	Direct material	\$3.60		
	Direct labor	1.00		
	Variable overhead	0.60		
	Cost per unit (variable)	\$5.20		
	Fixed overhead	0.40		
	Cost per unit (absorption)	<u>\$5.60</u>		
d.	Absorption cost of goods sold (48,7	750 × \$5.60)		\$273,000
	Plus underapplied overhead (55,000	$0 \times (0.40)$		22,000
	Adjusted cost of goods sold	. ,		\$295,000
	Selling and administrative costs:			
	Variable (48,750 × \$0.40)		\$ 19,500	
	Fixed		150,000	169,500
	Total expense (absorption)			\$464,500
	Variable cost of goods sold (48,750) × \$5.20)	\$253,500	
	Variable selling expenses (48.750)	< \$0.40)	19,500	
	Fixed overhead	40000)	40,000	
	Fixed selling and administrative ex	penses	150.000	
	Total expense (variable)	F	\$463,000	

e. Income is higher under variable costing because the sales level is greater than the production level. Income will be higher by the fixed overhead per unit (\$0.40) times the change in inventory (3,750 unit decline) or \$1,500.

a.	<u>x</u>	$\underline{\mathcal{Y}}$	\underline{xy}	\underline{x}^2
	50	\$ 175	\$ 8,750	2,500
	44	162	7,128	1,936
	40	154	6,160	1,600
	35	142	4,970	1,225
	53	185	9,805	2,809
	58	200	11,600	3,364
	60	202	12,120	3,600
	<u>340</u>	<u>\$1,220</u>	<u>\$60,533</u>	17,034

 $\overline{x} = 340 \div 7 = 48.57$ $\overline{y} = \$1,220 \div 7 = \174.29 $b = \frac{\sum xy - n(\overline{x})(\overline{y})}{\sum x^2 - n(\overline{x})^2} = \frac{\$60,533 - 7(48.57)(\$174.29)}{17,034 - 7(48.57)(48.57)} = \frac{\$1,276.14}{520.69} = \$2.45$ $a = \overline{y} - b\overline{x} = \$174.29 - 2.45(48.57) = \$55.29$ y = \$55.29 + \$2.45 (# of shipments)

b. y = \$55.29 + \$2.45(165) = \$459.54

34.

Note that one would be cautious to use this prediction because 165 may be substantially greater than the relevant range of activity.

35.

\underline{x}	$\underline{\mathcal{Y}}$	<u>xy</u>	$\underline{x^2}$
200	\$ 300	\$ 60,000	40,000
325	440	143,000	105,625
400	480	192,000	160,000
410	490	200,900	168,100
525	620	325,500	275,625
680	790	537,200	462,400
820	840	688,800	672,400
900	900	810,000	810,000
4,260	<u>\$4,860</u>	<u>\$2,957,400</u>	2,694,150

 $\overline{x} = 4,260 \div 8 = 532.60$

$$\overline{y} = \$4,860 \div 8 = \$607.50$$

$$b = \frac{\sum xy - n(\overline{x})(\overline{y})}{\sum x^2 - n(\overline{x})^2} = \frac{\$2,957,400 - 8(532.50)(\$607.50)}{2,694,150 - 8(532.50)(532.50)} = \frac{\$369,450}{425,700} = \$0.87$$

$$a = \overline{y} - b\overline{x} = \$607.50 - \$0.87(532.50) = \$144.23$$

$$y = \$144.23 + \$0.87 \text{ MH}$$

43. a

<u>MHs</u>	<u>Total Cost</u>	=	Variable Cost	+	Fixed Cost
2,700	\$13,160		\$8,640		\$4,520
<u>(1,400</u>)	<u>(9,000</u>)		4,480		4,520
1,300	<u>\$ 4,160</u>				
	<u>MHs</u> 2,700 <u>(1,400)</u> <u>1,300</u>	$\begin{array}{c ccc} \underline{MHs} & \underline{Total Cost} \\ 2,700 & \$13,160 \\ \underline{(1,400)} & \underline{(9,000)} \\ \underline{1,300} & \underline{\$4,160} \end{array}$	$ \underline{MHs} \\ 2,700 \\ \underbrace{Total Cost}_{\$13,160} = \\ \underbrace{(1,400)}_{1,300} \\ \underbrace{(9,000)}_{\$4,160} = \\ \hline $	$ \underline{MHs} \\ 2,700 \\ \hline 13,160 \\ \underline{(1,400)} \\ \underline{(9,000)} \\ \underline{(9,000)} \\ \underline{(4,480)} \\ \underline{(1,300)} \\ \underline{\$ 4,160} \end{bmatrix} $	$ \underline{MHs} \\ 2,700 \\ \hline 13,160 \\ \underline{(1,400)} \\ \underline{(1,400)} \\ \underline{(1,300)} \\ \underline{\$4,160} \\ \hline 1,300 \\ \underline{\$4,160} \\ \hline 1,100 \\ \underline{\$4,160} \\ \hline 1,100 \\ \underline{\$4,160} \\ \hline 1,100 \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ \underline{\$4,160} \\ $

Variable rate = $$4,160 \div 1,300$ MHs = \$3.20 per MH High activity variable cost = $2,700 \times $3.20 = $8,640$ Low activity variable cost = $1,400 \times $3.20 = $4,480$ Fixed cost at low activity = \$9,000 - \$4,480 = \$4,520Total R&M cost = \$4,520 + \$3.20 MH

4		
	I.	-
	r	٦
	L	,
		~

<u></u>	$\underline{\mathcal{Y}}$	\underline{xy}	$\underline{x^2}$
1,400	\$ 9,000	\$ 12,600,000	1,960,000
1,900	10,719	20,366,100	3,610,000
2,000	10,900	21,800,000	4,000,000
2,500	13,000	32,500,000	6,250,000
2,200	11,578	25,471,600	4,840,000
2,700	13,160	35,532,000	7,290,000
1,700	9,525	16,192,500	2,890,000
2,300	11,670	26,841,000	5,290,000
16,700	<u>\$89,552</u>	<u>\$191,303,200</u>	36,130,000

 $\overline{x} = 16,700 \div 8 = 2,087.50$

 $\overline{y} = \$89,552 \div 8 = \$11,194$

 $b = \frac{\sum xy - n(\overline{x})(\overline{y})}{\sum x^2 - n(\overline{x})^2} = \frac{\$191,303,200 - \$(2,087.50)(\$11,194)}{36,130,000 - \$(2,087.50)(2,087.50)} = \frac{\$4,363,400}{1,268,750} = \3.44 $a = \overline{y} - b\overline{x} = \$11,193.25 - \$3.44(2,087.50) = \$4,012.25$ y = \$4,012.25 + \$3.44 MH c. Part (b) computations provide the better answer. The least squares regression approach takes into consideration all of the available data and employs a mathematical algorithm to minimize the variance around the fitted regression line.

a.	<u>x</u>	\mathcal{Y}	\underline{xy}	$\underline{x^2}$
	10	\$ 8,000	\$ 80,000	100
	14	9,200	128,800	196
	22	12,000	264,000	484
	28	14,200	397,600	784
	40	18,500	740,000	1,600
	62	28,000	1,736,000	3,844
	100	34,000	3,400,000	10,000
	90	30,000	2,700,000	8,100
	80	24,000	1,920,000	6,400
	<u>446</u>	<u>\$177,900</u>	<u>\$11,366,400</u>	<u>31,508</u>

$$\overline{x} = 446 \div 9 = 49.56$$

 $\overline{v} = \$177,900 \div 9 = \$19,766.67$

 $b = \frac{\sum xy - n(\overline{x})(\overline{y})}{\sum x^2 - n(\overline{x})^2} = \frac{\$11,366,400 - 9(49.56)(\$19,766.67)}{31,508 - 9(49.56)(49.56)} = \frac{\$2,549,675}{9,402.26} = \$271.18$ $a = \overline{y} - b\overline{x} = \$19,766.67 - \$271.18(49.56) = \$6,327$

v =\$6.327 + \$271.18 (# of charters)

b.	<u>x</u>	$\underline{\mathcal{Y}}$	\underline{xy}	$\frac{x^2}{2}$
	\$ 12,000	\$ 8,000	\$ 96,000,000	144,000,000
	18,000	9,200	165,600,000	324,000,000
	26,000	12,000	312,000,000	676,000,000
	36,000	14,200	511,200,000	1,296,000,000
	60,000	18,500	1,110,000,000	3,600,000,000
	82,000	28,000	2,296,000,000	6,724,000,000
	120,000	34,000	4,080,000,000	14,400,000,000
	100,000	30,000	3,000,000,000	10,000,000,000
	96,000	24,000	2,304,000,000	9,216,000,000
	<u>\$550,000</u>	<u>\$177,900</u>	<u>\$13,874,800,000</u>	46,380,000,000

$$\overline{x} = \$550,000 \div 9 = \$61,111.11$$

 $\frac{x}{y} = \$177,900 \div 9 = \$19,766.67$ $b = \frac{\sum xy - n(\overline{x})(\overline{y})}{\sum x^2 - n(\overline{x})^2} = \frac{\$13,874,800,000 - 9(61,111.11)(\$19,766.67)}{46,380,000,000 - 9(61,111.11)(61,111.11)}$ $= \frac{\$3,003,131,697.67}{12,768,890,111.11} = \0.235

 $a = \overline{y} - b\overline{x} = \$19,766.67 - \$0.235(61,111.11) = \$5,405.56$

y = \$5,405.56 + \$0.235 (gross receipts)

52.