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In this  paper,  we  develop  a dynamic  model  of  a  limit  order  market
populated  with  liquidity  traders  who  have  only  private  values.  We
characterize  and  analyze  the  equilibrium  order  placement  strate-
gies  of traders  and  the  conditional  execution  probabilities  of  limit
orders  as  a function  of  traders’  liquidity  demand  and  the  state  of
the  limit  order  book.  We  solve  for  the  equilibrium  of the  model
numerically,  and  analyze  its properties  by performing  comparative
dynamics  analysis.  Our  analysis  shows  that  changes  in  the steady
state  of  the  limit  order  book  and  optimal  order  placement  strate-
gies  reflect  corresponding  changes  in the  trade-off  between  order
execution  risk  and the  size  of  potential  trading  gains.  The  equilib-
rium order  flow  depends  on the current  state  of  the  limit  order  book
since  a  trader’s  optimal  trading  strategy  is  largely  affected  by the
time  and  price  priorities  of  the  existing  limit  orders  in  the  book.
We  demonstrate  how  changes  in  the  dispersion  of  traders’  private
values  affect  optimal  trading  strategies  and  conditional  execution
probabilities  of limit  orders.  Our  main  result  is  that  the  disper-
sion in  private  values  across  traders  has  a significant  impact  on  the
stationary  state  of  the  equilibrium  limit  order  book  and  the  aver-
age  bid–ask  spread.  A  wider  distribution  of  private  values  leads  to
more  order  placement  at  prices  away  from  the  consensus  value,  and
therefore,  to a  larger  bid–ask  spread.  Further,  our numerical  simula-
tions  show  that  extending  the  life  span  of limit  orders  reduces  the
average  bid–ask  spread  observed  in  equilibrium.  Finally,  we  find
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that  the  equilibrium  percentage  of market  order  submissions  is also
increasing in  the  dispersion  in  liquidity  traders’  private  values.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a limit order market, buyers and sellers can submit an order of one of two types. A market order
executes immediately the best price posted by previous limit orders. A limit order specifies a particular
price for the order and specifies a promise to trade at that price. The limit order book is a list of all
unexecuted limit orders. Traders provide liquidity by submitting limit orders and consume liquidity by
submitting market orders. Many financial assets are traded in limit order books. There are many stock
exchanges around the world where trading takes place completely (e.g., Euronext, Stockholm, Helsinki,
Hong Kong, Shanghai, Tokyo, Toronto and various Electronic Communication Networks) or partially
through electronic limit order books (NYSE, Nasdaq, London). Despite this prevalence of limit order
markets, the theoretical literature on limit order markets is very small. Understanding the dynamic
choice between limit orders and market orders is important because rational agents can optimally use
different trading strategies depending on the state of the limit order book and their subjective beliefs
about the value of financial assets that are traded in these markets. These different strategies, in turn,
can generate significant effects on price impact, trading volume, bid–ask spreads, and the volatility of
market prices.

The objective of this paper is to develop a new model of dynamic optimal order placement in a limit
order market in order to better understand the economic trade-offs underlying the choice between
limit orders and market orders by incorporating the dynamic nature of limit order markets. In our
simple setting with symmetrically informed traders each of which has a private valuation of an asset,
we focus on the trade-off between the price of an order and its execution probability that is essen-
tial to the analysis of traders’ choice between limit and market orders. This basic trade-off between
order price and execution probability can be summarized as follows. A trader can always obtain a
larger probability of execution at the cost of a less favorable execution price away from the bid–ask
spread, which can be interpreted as an implicit cost for demanding liquidity. By definition, a market
order is a “limit order” with execution probability one and therefore has no execution risk at all. The
motivation for trade results from agents’ differences in their private valuations of the asset, which
causes the agents to have differences in their incentives to provide or consume liquidity. Traders with
more extreme private values are more impatient than traders with moderate private valuations that
are close to the mean of the probability distribution of private values. In our model, there is no inde-
pendently moving common value component and the average private value of traders is constant.
Therefore, we abstract from the risk of being picked off (winner’s curse).1 Thus, we focus on the trade-
off between price and execution probability in a limit order market and its effect on liquidity provision
in an environment without adverse selection. After modeling the arrival of traders (sellers or buyers)
in the market, we characterize and analyze the equilibrium order placement strategies of traders in
terms of the state of the limit order book and the execution probabilities of limit orders. We  solve
for the equilibrium of our model numerically using several parameter specifications and theoretically
investigate its properties by performing comparative dynamics analysis. In our model, limit orders last
for a finite number of periods, and they cannot be modified or canceled after submission. We  devise
and implement a numerical algorithm of successive approximations to solve for the stationary Markov
equilibrium of the model. The algorithm is based on mapping the liquidity demand/supply of traders
into their subjective order execution probabilities. Imposing a monotonicity restriction as in Hollifield,
Miller, Såndas, and Slive (2006),  we then invert this mapping to derive the liquidity demand/supply of
the traders with respect to the execution probabilities of orders at different prices. Using this approach

1 Since a limit order involves a commitment to a price, it is exposed to unfavorable changes in the common value of the asset.
This  adverse selection risk is called the winner’s curse risk or picking-off risk.
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recursively, we find the fixed point of traders’ liquidity demand/supply and the corresponding exe-
cution probabilities in a stationary equilibrium. Our approach lends itself to the characterization of
the equilibrium order book in a discrete Markov-chain state representation. Therefore, we  are able to
analyze the interactions between transient changes in the state of the book and the order flow.

Our model yields several interesting new results about the evolution of limit order book in time,
the bid–ask spread, and the effect of price priority and time priority rules on the optimal placement of
limit orders. Our main finding is that the dispersion in private values across traders is a major factor
determining the stationary state of the equilibrium limit order book, the bid–ask spreads, and the depth
of the quotes in the limit order book. When the dispersion of agents’ private valuations of the asset is
small, we predict that submitting limit buy or sell orders at price quotes far from the middle point of
the limit order book is less profitable. Since, in this case, agents (on both sides of the book) are more
patient, their demand for liquidity is lower, i.e., their tendency to submit more aggressive limit orders
and market orders is not strong. Dynamically, this implies that the future execution probabilities of
more conservative limit orders submitted (on the other side of the book) in the current time period
are lower. Hence, the expected returns to placing buy (sell) limit orders that are far below (above) an
investor’s own  private valuation are lower even though potential gains from limit orders conditional
on execution are high. On the other hand, as the dispersion in agents’ private values increases, the
number of impatient traders with higher liquidity demands increases. This makes it more profitable
for other traders (with moderate private values) to place more conservative limit orders with larger
potential profits, since the execution probability of these orders increases with the presence of more
aggressive traders demanding liquidity. Hence, under market conditions with a large dispersion in
liquidity traders’ private valuations, the expected returns to placing buy (sell) limit orders that are far
below (above) an investor’s own  private valuation are higher in equilibrium. Thus, our results show
that a wider distribution of private values leads to more order placement at prices away from the
consensus value, and therefore, to a larger bid–ask spread. The results of our numerical simulations
also show that the equilibrium order flow depends on the current state of the limit order book in the
sense that an agent’s optimal trading strategy is largely affected by the time and price priorities of
the existing limit orders in the book. Our model generates another prediction regarding the effect of
increasing the life span of limit orders. We  find that as the life span of a limit order increases from two
to three periods in our model, the average bid–ask spread falls in equilibrium. Finally, our results also
show that the equilibrium percentage of market order submissions is also increasing in the dispersion
in traders’ private values.

The empirical market microstructure literature documents evidence suggesting that traders follow
order placement strategies that depend on the state of the market characterized by the limit order
book. Using data on limit and market orders from the Paris Bourse, Biais, Hillion, and Spatt (1995)
document the persistence of order flow and find that traders react by submitting limit orders in rapid
succession when the bid–ask spread or the depth at the quotes is large. Hamao and Hasbrouck (1995)
study the limit order book of the Tokyo Stock Exchange and also document persistence in order flow.
Harris and Hasbrouck (1996) show that the profitability of limit and market orders varies with market
conditions on the NYSE. Goldstein and Kavajecz (2000) document substantial shifts in the willingness
of traders to place limit orders during extreme market movements in the New York Stock Exchange
(NYSE). Sandås (2001) analyzes data from the Stockholm Exchange to test the empirical implications
of the static model of Glosten (1994) and rejects them. Hollifield, Miller, and Såndas (2004) show
that changes in the relative profitability of limit and market orders are important in explaining the
empirical variation in order submission strategies in the Stockholm Stock Exchange. They empirically
characterize and estimate optimal order strategies by a monotone function which maps the liquidity
demand of the investors into their subjective execution probabilities. They find little evidence against
the monotonicity restriction on the estimated trading strategy, which is the basis of our theoretical
framework.2

2 Hollifield et al. (2006) provide another empirical evidence of variation in liquidity supply and demand in the Vancouver
Stock  Exchange by also incorporating endogenous estimation of arrival rates of traders into their model. They find that traders’
decision to supply or demand liquidity depends on whether it is scarce or abundant in the current state of the market. Their
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The trade-offs related to price, execution probability and the risk of winner’s curse form the
basic framework of the theoretical literature on the choice between limit orders and market
orders: see Cohen, Maier, Schwartz, and Whitcomb (1981), Kumar and Seppi (1993), Glosten (1994),
Chakravarty and Holden (1995),  Handa and Schwartz (1996), Rock (1996),  Seppi (1997),  Parlour
(1998), Foucault (1999),  Biais, Martimort, and Rochet (2000),  Foucault, Kadan, and Kandel (2005),
Wald and Horrigan (2005),  Goettler, Parlour, and Rajan (2005, 2009),  and Rosu (2009).  These papers
theoretically analyze prices, trading volumes, and efficiency in limit order markets. Among the the-
oretical studies listed above, only Parlour (1998),  Foucault (1999),  Foucault et al. (2005), Goettler
et al. (2005),  and Rosu (2009) analyze limit order trading in a dynamic setting. Parlour (1998)
has a finite-horizon model where traders with private values can place orders either at an ask
price A or at a bid price B. Foucault (1999) obtains closed-form solutions for the stationary equi-
librium of his infinite-horizon dynamic model, and analyzes the equilibrium implications of the
trade-off between price and execution probability, and winner’s curse. However, in his model, limit
orders expire after only one time period. Goettler et al. (2005) solve numerically for the station-
ary Markov perfect equilibrium in a dynamic limit order market. Their focus is on transaction
costs, picking-off risk due to adverse selection, and the relationship between the consensus (fun-
damental) value of an asset and the characteristics of the limit order book. Unlike in the last two
studies, there is no risk of limit orders being picked off (adverse selection risk) in our model, since
the common value component is fixed. Therefore, the main contribution of our paper to the lit-
erature on limit order markets is to study liquidity provision in an environment without adverse
selection.3

The paper is organized as follows. We  outline our model in Section 2. In Section 3, we  solve for
the equilibrium of our model numerically and describe our solution algorithm. Next, we present an
illustrative numerical example in Section 4. In Section 5, we  present and discuss the results of our
analysis of comparative dynamics. We  describe the empirical implications of our model in Section 6.
Section 7 concludes.

2. Model

This section presents the theoretical model we analyze in detail in later sections. First, we  provide
assumptions on the trading rules and trader preferences.

2.1. Description of the dynamic trading game

We  consider the market for a single risky asset. Traders with different private valuations for the
asset arrive sequentially in the market with an opportunity to trade. Agents can place an order to buy
or sell one unit of the asset at a price chosen from the finite set

P ≡ {p1, . . . , pN}, (1)

where pi < pi+1 for any i ∈ {1, . . .,  N − 1}. In our numerical simulations, we specifically set N = 4, with
p1 = 30, p2 = 31, p3 = 32, p4 = 33.4 The variable t refers to both the time period t when the order is
submitted and to the agent whose turn it is to place an order at time t, where t ∈ {0, 1, . . . }.

Upon arriving at the market, if the trader t decides to place an order for one unit of the asset, she
determines the type of her order. Once an order has been submitted, it will either trade immediately

evidence suggests that if liquidity is scarce and therefore valuable, liquidity traders supply liquidity, but when its abundantly
available, they prefer to demand it.

3 Foucault et al. (2005) also consider a dynamic model of a limit order market motivated by traders who have differences
in  waiting costs, and they analyze bid–ask spread dynamics, market resiliency, effect of tick size, and time to execution. They
require limit order traders to undercut existing orders, without the option to submit orders at or away from the quotes. Rosu
(2009)  presents a continuous time version of the Foucault et al. (2005) model, and endogenizes their undercutting result.
Goettler et al. (2009) and Rosu (2010) extend their previous models to introduce asymmetric information.

4 It is possible to model the price grid P to include more than 4 consecutive prices. For simplicity, we focus here on specifi-
cations with N = 4 in our numerical simulations.
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(i.e., it is a market order) or enter the queue of unexecuted orders which is referred to as the limit
order book. If a limit order is not executed in M periods after it has been submitted, it automatically
expires at the end of the Mth period. In our model, we  first analyze model specifications with M = 2.
Later, we also model cases with M = 3, and analyze the effect of increasing M (from 2 to 3) to the limit
order market equilibrium in our model. We  assume that once a limit order is submitted, it cannot be
canceled. At any time t, the limit order book consists of outstanding orders to buy and sell stock at
some feasible prices. Note that the maximum number of outstanding limit orders at any given time t
and the maximum depth at any given price quote pi are both equal to M.  The number of outstanding
limit orders at given prices and the age of each order completely determines the state of the order
book. An implication of sequential trading is that none of the existing limit orders can have the same
age in a given state of the market. Given that limit orders can last up to M periods and the price set P
is finite, it follows that the number of possible states of the limit order book is also finite. In our basic
model with four price points (N = 4) where the limit orders last for M = 2 periods, the total number of
states S is equal to 61. The state space is denoted by  ̋ and each unique state of the limit order book
is denoted by ωs. For example,

ω51 = {+2, 0, −1, 0}, (2)

corresponds to the state of the limit order book at time t when there is already a limit buy order at
price p1 submitted at time t − 2 and a limit sell order submitted at price p3 at time t − 1. Suppose that
this is the state of the market at time t and consider the states to which the order book can make a
transition at time t + 1 depending on the order strategy of the trader at time t.

1. Do not place an order or place a market sell order at price p1: ω16 = {0, 0, − 2, 0}
2. Place a limit sell order at p2: ω41 = {0, − 1, − 2, 0}
3. Place a limit sell order at p3

5: ω24 = {0, 0, (− 1, − 2), 0}
4. Place a limit sell order at p4: ω61 = {0, 0, − 2, − 1}
5. Place a limit buy order at p1: ω33 = { +1, 0, − 2, 0}
6. Place a limit buy order at p2: ω29 = {0, + 1, − 2, 0}
7. Place a limit buy order at p3: ω1 = {0, 0, 0, 0}

We can further explain the construction of the state space of the limit order book as follows.
With M = 2, there can be one of 7 possible order combinations at any given price quote pi: (1) no
orders denoted by 0; (2) one buy order with age 1 denoted by +1; (3) one sell order with age 1
denoted by −1; (4) one buy order with age 2 denoted by +2; (5) one sell order with age 2 denoted
by −2; (6) two buy orders with ages 1 and 2 respectively, denoted by (+1,+2); (7) two  sell orders
with ages 1 and 2 respectively, denoted by (− 1, − 2). We  first start with the empty book state,
which is denoted by ω1. We  then consider all states where there exist limit orders at only one price
quote: out of the above 7 possible order combinations, 6 of them actually contain orders and each
of them can be placed at N = 4 different prices, which yields 24 states from ω2 to ω25. Next, we
consider all states where there exist limit orders at two  different price quotes: out of the 4 single-
order combinations above (i.e., 2, 3, 4, and 5), there are 12 (4 × 3) possible two-way permutations
of which only 6 are feasible in a limit order book: { + 1, + 2}, { + 1, − 2}, { − 1, − 2}, { + 2, + 1}, { + 2,
− 1}, and { − 2, − 1}. Given a price grid with N = 4 units, each of these 6 two-way permutations can
be placed into the limit order book in 6 (two-way combinations of 4 prices) different ways, which
yields 36 other states from ω26 to ω61. In general, for any N ≥ 4 and M = 2, the number of states is
given by6:

S = 1 + 6N + 6
N(N − 1)

2
.  (3)

5 The notation (− 1, − 2) indicates that there are two limit sell orders outstanding at the same price quote with ages 1 and
2  respectively. For example, in state ω24, there are two  limit sell orders outstanding at price p3. Similarly, to denote two limit
buy  orders outstanding at the same price quote, we use the notation (+ 1, + 2).

6 For example, if M = 2 and N = 5, the number of states is given by S = 1 +6 × 5 +6 × 10 = 91.
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Similarly, for any N ≥ 4 and M = 3, the number of states is given by7:

S = 1 + 14N + 36
N(N − 1)

2
+ 24

N(N − 1)(N − 2)
6

.  (4)

We will refer to the state of the market at time t as st. Given the structure of the model, in certain
states of the market, a trader can outbid the best quote, bid at the best quote, or underbid the best
quote. The ask price is the lowest quoted price of existing limit sell orders at time t, and it is denoted
at. If the sell side of the book is empty, at =+ ∞.  Similarly, the bid price, bt, is the highest limit price
of existing limit orders to buy at time t. If the buy side of the book is empty, bt =− ∞. To denote the
state dependence of bid and ask prices, we also use the notation a(st) and b(st) for the ask and the bid,
respectively.

Let K and L be such that pK = max  {b(st), p1} and pL = min  {a(st), pN}. The trader’s decision in state
st will be denoted with the decision variables ds

k
(t), db

l
(t) for k = K, . . .,  N and l = 1, . . .,  L. If ds

k
= 1 for

some k where pk > b(st), then the trader submits a limit sell order at price pk. If the trader places a
market sell order at the bid price b(st) = pK, such that ds

K (t) = 1, then the order is immediately matched
with the oldest outstanding limit order at the bid price b(st). If db

l
(t) = 1 for some l where pl < a(st), the

trader submits a limit buy order at price pl. If the trader places a market buy order at the ask price
a(st) = pL, such that db

L (t) = 1. If the trader does not submit any order, then ds
k
(t) = 0, db

l
(t) = 0 for all

k and l. As implied by these definitions, orders are first prioritized by price and then by submission
time.

2.2. Trader preferences

We assume that the traders are symmetrically informed. The rationale for trading results from
the different liquidity demands of the agents characterized by their private valuations of the asset.
Depending on their private valuations, agents may  want to supply or demand liquidity to the market
or not to submit an order at all. This renders the market as a private value auction. Hence, the decision
to trade and the choice of the type and the price of an order is endogenous.

The tth agent’s private valuation for the asset is denoted ut. We  consider an i.i.d. uniform distribution
for private values which is centered at the mid-point of the prices at which orders can be submitted.
Thus, ut is distributed independently and identically across agents uniformly with support [A, B], where
A = p1 − w, B = pN + w, and w is a positive constant. The private valuation ut can be interpreted as
the tth agent’s preference for liquidity and captures her willingness to hold the asset. Even though
there is no explicit common value component in this setting, we can think of the common value
of the asset as being fixed at (A + B)/2, or equivalently at the middle of the price grid P, which is
equal to (p1 + pN)/2.8 Thus, in our limit order market setting without adverse selection (the risk of
being picked off), the only motivation for trade is agents’ differences in their private valuations of the
asset.

All agents are assumed to be risk neutral and maximize their expected utility. Conditional on
arriving in the market at state st, the expected payoff of a trader who  submits an order crucially

7 In this case, there are a total of 15 possible order combinations at a single price quote: (1) no orders denoted by 0; (2) one
buy  order with age 1 denoted by +1; (3) one sell order with age 1 denoted by −1; (4) one buy order with age 2 denoted by +2;
(5)  one sell order with age 2 denoted by −2; (6) one buy order with age 3 denoted by +3; (7) one sell order with age 3 denoted
by  −3, (8) two buy orders with ages 1 and 2 respectively, denoted by (+1,+2); (9) two  sell orders with ages 1 and 2 respectively,
denoted by (− 1, − 2); (10) two buy orders with ages 1 and 3 respectively, denoted by (+1,+3); (11) two sell orders with ages 1
and  3 respectively, denoted by (− 1, − 3); (12) two buy orders with ages 2 and 3 respectively, denoted by (+2,+3); (13) two  sell
orders with ages 2 and 3 respectively, denoted by (− 2, − 3); (14) three buy orders with ages 1, 2, and 3 respectively, denoted by
(+1,+2,+3); (15) three sell orders with ages 1, 2, and 3 respectively, denoted by (− 1, − 2, − 3). Then, the first state is the empty
limit  order book. The number of all states where there exist limit orders at only one price quote is 14N. The number of all states
where there exist limit orders at two different price quotes is 36N(N − 1)/2. Finally, the number of all states where there exist
limit  orders at three different price quotes is 24N(N − 1)(N − 2)/6.

8 Note that it is only a semantic distinction to state that there is no common value and private values are uniformly distributed
over  [A, B] or to state that the common value is fixed at (A + B)/2 and private values are uniformly distributed over [− (B − A)/2,
+  (B − A)/2]. We  thank to an anonymous referee for suggesting this insightful interpretation of our model.



104 O. Bayar / Journal of Economics and Business 66 (2013) 98– 124

depends on the conditional execution probability of that order. Conditional execution probabilities
for buy and sell orders at each price pi at time t, in state st are denoted by � b

i
(st) and � s

i
(st), respectively.

We will show below how these probabilities can be computed given a rule that monotonically maps
a trader’s liquidity demand into those execution probabilities. Suppose that a trader with valuation u
submits a buy order at price pi. Then her expected payoff conditional on the information at time t is
equal to � b

i
(st)[u − pi]. Similarly, the conditional expected payoff of a trader with valuation u is equal

to � s
i
(st)[pi − u] when she submits a sell order at price pi. The trader chooses ds

k
∈ {0, 1} for k = K, . . .,

N and db
l

∈ {0, 1} for l = 1, . . .,  L to maximize

N∑
k=K

ds
k� s

k(st)[pk − u] +
L∑

l=1

db
l � b

l (st)[u − pl], (5)

subject to the constraint:

N∑
k=K

ds
k +

L∑
l=1

db
l ≤ 1.

2.2.1. Indifference threshold valuations
To find the optimal decision rule that maps a trader’s private valuation ut to order submission

prices in state st, we first define some threshold valuations. For i > 1, the parameter �b
i
(st) denotes

the threshold valuation that makes a trader just indifferent between submitting a buy order at price
pi and submitting a buy order at price pi−1 in state st. Thus, for all i > 1 such that pi ≤ a(st), a trader
strictly prefers submitting a buy order at pi to submitting a buy order at pi−1 if and only if trader t’s
private valuation ut is greater than the threshold �b

i
(st). Similarly, for i < N, �s

i
(st) denotes the threshold

valuation that makes a trader just indifferent between submitting a sell order at price pi and submitting
a sell order at price pi+1 in state st. The parameters �s

N(st) and �b
1(st) are the limits of the closed interval

[�s
N(st), �b

1(st)], in which a trader makes a no-order decision.
The following lemma  builds an important link between conditional order execution probabilities

{� b
i

(st), � s
i
(st)}N

i=1 and traders’ private valuations:

Lemma  1. For two buyers with valuations u and u′, u′ > u, who optimally choose to submit buy orders at
prices pb

i
and pb

j
, respectively, we have:

(u − u′)(� b
i − � b

j ) ≥ 0. (6)

Similarly, for two sellers with valuations u and u′, u′ > u, who optimally choose to submit sell orders at
prices ps

i
and ps

j
, respectively, we have

(u′ − u)(� s
i − � s

j ) ≥ 0.

Proof. By optimality,

� b
i (u − pb

i ) ≥ � b
j (u − pb

j ),

� b
j (u′ − pb

j ) ≥ � b
i (u′ − pb

i ).

Multiplying the second inequality by −1 and adding and rearranging gives:

(u − u′)(� b
i − � b

j ) ≥ 0.

The proof is symmetric for the sell side. �

Lemma  1, adapted into our setting from Hollifield et al. (2006),  shows that execution probabilities
of optimally placed orders must be monotone with respect to the traders’ private valuation, which
measures their liquidity demand. This means that the higher the private valuation of a limit order buyer
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(u′ > u), the higher will be the execution probability of her limit buy order (� b
j

≥ � b
i

) since buyers with
higher private values have a greater liquidity demand on the buy side. In fact, if a buying trader’s private
valuation exceeds some threshold, she will submit a market buy order with probability 1. Similarly,
the lower the private valuation of a seller (u < u′), the higher will be the execution probability of
her limit sell order (� s

i
≥ � s

j
) since sellers with lower private values will be more impatient to sell

the asset and therefore have a greater liquidity demand on the sell side. Further, if a selling trader’s
private valuation is below some threshold, she will submit a market sell order with probability 1. Thus,
according to Lemma  1, optimality requires that the mapping from valuations to execution probabilities
is monotone. Traders with extremely low or high values of ut have a higher willingness to trade the
asset immediately, whereas traders with moderate values of ut demand liquidity more patiently and
only if the current state of the order book presents them profitable trading opportunities. The next
proposition shows that, as the limit order price moves away from the bid–ask spread, the conditional
order execution probability decreases monotonically.

Proposition 1. Suppose that there exist two agents who  optimally submit buy orders at prices pb
i

and pb
j

respectively, and � b
i

≤ � b
j

. Then, it follows that pb
i

≤ pb
j
. Similarly, if ps

i
and ps

j
are some optimal prices to

sell and � s
i

≤ � s
j
, it follows that ps

i
≥ ps

j
.

Proof. Suppose that pb
i

> pb
j
. Since it is optimal for some agent to submit a buy order at pb

i
, optimality

requires that there exists a u such that u > pb
i

> pb
j
. Then for any such u, we have

� b
j (u − pb

j ) > � b
i (u − pb

i ), (7)

which implies that the agent with private value u will prefer to submit a buy order at pb
j

rather than

pb
i
, hence a contradiction. The proof is symmetric for the sell side. �

Together with Lemma  1, Proposition 1 implies the monotonicity of the mapping from private valua-
tions to order prices that could be optimal for some trader given the state of the limit order book. From
Lemma  1, we know that for two  buyers with valuations u and u′ (where u′ > u), who optimally choose
to submit buy orders at prices pb

i
and pb

j
respectively, it follows that � b

i
≤ � b

j
. Further, Proposition 1

shows that in this case, the price pb
j

at which the trader with the higher private valuation u′ submits

his optimal buy order is not less than the price pb
i

at which the buying trader with the lower pri-
vate valuation u submits her optimal buy order, i.e., pb

j
≥ pb

i
. Given the monotonicity of optimal order

submissions in trader valuations, the optimal order placement strategy is fully characterized by the
following proposition, which is also adapted to our model from Hollifield et al. (2006).

Proposition 2 (Optimal order placement strategy). Suppose that a trader with private valuation u
arrives at the market at time t and the state of the market is st ∈ ˝.  Trading opportunities in the limit order
book are characterized by the conditional execution probabilities � s

k
(st) and � b

l
(st) for sell order choices

k = K, . . .,  N and buy order choices l = 1, . . .,  L, respectively. The set of prices that could be optimal for some
trader given the state of the book are ps

K < · · · < ps
N on the sell side, where ps

K ≥ b(st), with pb
L > · · · > pb

1
defined similarly for the buy side, where pL ≤ a(st). Defining

�s
k(st) = pk −

(pk+1 − pk)� s
k+1(st)

� s
k
(st) − � s

k+1(st)
, k = K, . . . , N − 1; (8)

�b
l (st) = pl +

(pl − pl−1)� b
l−1(st)

� b
l−1(st) − � b

l
(st)

,  l = 2, . . . , L; (9)

�b
1(st) = �s

N(st) = � b
1 (st)p1 + � s

N(st)pN

� b
1 (st) + � s

N(st)
. (10)
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The optimal decision rule is given by

d∗s
K (st) =

{
1, u ≤ �s

K (st)

0, otherwise
, (11)

d∗s
k (st) =

{
1, u ∈ (�s

k−1(st), �s
k
(st)]

0, otherwise
, k = K + 1, . . . , N; (12)

d∗b
l (st) =

{
1, u ∈ (�b

l
(st), �b

l+1(st)]

0, otherwise
,  l = 1, . . . , L − 1; (13)

d∗b
L (st) =

{
1, u > �b

L (st)

0, otherwise
. (14)

The threshold valuations �s
k
(st) and �b

l
(st) given in Eqs. (8) and (9) respectively are obtained by

solving for private valuations that make a trader just indifferent between submitting an order at two
adjacent prices:

� s
k(st)(pk − �s

k(st)) = � s
k+1(st)(pk+1 − �s

k(st)), (15)

� b
l (st)(�b

l (st) − pl) = � b
l−1(st)(�b

l (st) − pl−1). (16)

Lemma  1 and Proposition 1 together imply that traders’ optimal order placement strategies are
monotone in the following sense. For instance, when at = pL and all feasible buy order prices pL > · · · > p1
are optimal for some buyers, then the corresponding threshold valuations form a monotone sequence
�b

L (st) > · · · > �b
1(st) that divides the valuation line into L + 1 intervals. The optimal decision rule maps

these valuation intervals into bidding strategies at L different prices. Thus, traders with higher val-
uations submit buy orders with higher prices, which have a higher execution probability. Symmetric
arguments apply to the sell side. Hence, traders with lower valuations submit sell orders with lower
prices, which have a higher execution probability.

For a buyer indifferent between submitting a buy order at the lowest possible price p1 and not
entering an order, the threshold value �b

1(st) solves:

� b
1 (st)(�b

1(st) − p1) = 0. (17)

Thus, �b
1(st) = p1. Similarly, for the sell side, the indifference equation � s

N(st)(pN − �s
N(st)) = 0 implies

that �s
N(st) = pN . But then, [�s

N, �b
1] = [pN, p1] is an empty set (since pN > p1 by assumption), which

shows that in the absence of a time-varying common value of the asset or trading cost differentials,
the no-order decision is dominated in every state of the market for all agents.9 In this case, if selling at
price pN and buying at price p1 are not dominated, �s

N is identically equal to �b
1, and therefore, denotes

the valuation at which the trader is indifferent between submitting a sell order at price pN and a buy
order at price p1. This follows from the following indifference equation:

� b
1 (st)(�s

N(st) − p1) = � s
N(st)(pN − �s

N(st)). (18)

A representation of a trader’s optimal order placement strategy as a monotone function of her private
valuation is shown in a graphical example depicted in Fig. 1.

3. Solving for the equilibrium

In this section, we explain the numerical solution method that we  implement to solve for the
stationary Markov equilibrium of our dynamic limit order trading game.

9 In our setting, an order placement strategy is dominated if there exists no agent with some private value u ∈ [A, B] such that
it  is optimal for that agent to follow that strategy.
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A θs
2 θs

4 = θb
1θs

3θs
1 θb

2 θb
3 θ4

b B

Sell at p2 Sell at p4 Buy at p2Sell at p1 Buy at p1Sell at p3 Buy at p3 Buy at p4

Fig. 1. Optimal order placement strategy as a function of the trader’s private valuation. This figure presents a visualization of
the  optimal order strategy of a trader arriving at time t as a function of her private valuation of the asset. The sell threshold
valuations �s

k
(st ) for k = K, . . .,  N and the buy threshold valuations �b

l
(st ) for l = 1, . . .,  L form a monotone sequence, which partitions

the  support [A, B] of the private value distribution into the trader’s optimal order choices. In this example, the price grid has
N  = 4 units, and the limit order book is in a state st , where K = 1 and L = 4.

3.1. Algorithm

The algorithm we implement to solve for the equilibrium is based on traders’ optimal order place-
ment strategy derived in Proposition 2 and the link between optimal order choice rules and the
conditional execution probabilities of submitted orders. It solves for the fixed point of the correspon-
dence on the space of optimal order placement rules defined by the monotone sequence of threshold
valuations we explained in the previous section. Let � be the space of optimal order placement
decision rules and �(� (st)) = {�b

i
(st), �s

j
(st); i = 1, . . . , Lst ; j = Kst , . . . , N} be an arbitrary element of �

implied by the conditional execution probabilities � (st) according to Proposition 2. Note that �(� (st))
is a mapping defined on the trading opportunities � (st) = {� b

i
(st), � s

i
(st); i = 1, . . . , Lst ; j = Kst , . . . , N}

available in state st at time t. But once an optimal decision rule �(� (st)) is specified, it also directly
affects the conditional execution probabilities of the submitted orders. In other words, the trading
opportunities defined by the conditional execution probabilities in a given state are also a function
of the specific decision rule implemented and therefore, we can denote them as � (�(st)). Thus, in a
stationary Markov equilibrium of our model, the sequence of optimal order placement rules �n(� n(st))
and the trading opportunities � n(�n−1(st)) will converge to their stationary limits �∗(� ∗(st)) and
� ∗(�∗(st)) respectively.

To understand the derivation of conditional order execution probabilities � implied by an optimal
decision rule �, one should first note that an optimal order placement rule �(st) determines the prob-
abilities of all feasible order submissions in any given state st. Suppose that a trader t arrives in the
market in a state st such that the sell side of the book is not empty, i.e., a(st)< + ∞.  Using the optimal
order placement strategy given in Proposition 2 and recalling that each trader’s private valuation is
uniformly distributed over the interval [A, B] with cumulative distribution function F, the conditional
probability that we will observe a market buy order is then equal to

P(d∗b
L (st) = 1) = P(u > �b

L (st)) = 1 − F(�b
L (st)). (19)

The conditional probability that a limit buy order is submitted at time t at a particular price pl, l = 1,
. . .,  L − 1 is equal to

P(d∗b
l (st) = 1) = P(�b

l (st) < u ≤ �b
l+1(st)) = F(�b

l+1(st)) − F(�b
l (st)). (20)

One can also obtain the conditional order submission probabilities for all feasible sell orders in state
st similarly.10 Thus, an optimal trading strategy � ∈ � monotonically maps traders’ private valuations
into their optimal order submissions and therefore, into conditional order submission probabilities
across feasible price quotes in any state st.

Second, one should also note that since there are finitely many states of the limit order book, the
transition possibilities among these states are well defined and finite. Given an order placement rule

10 Recall that once an optimal trading strategy � ∈ � is specified, the no-order decision is dominated in our setting without
adverse selection. Therefore, the probability of no-order submission is zero.
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� ∈ �,  conditional order submission probabilities obtained in Eqs. (19) and (20) allow us to compute
the one-period state transition probabilities between any two  states in ˝.  If a stationary equilibrium
exists, we know that �∗ ∈ � will also be the optimal decision rule of the traders arriving at times
t + 1 through t + M,  since the underlying probability distribution of their private valuations is inde-
pendently and identically distributed as that of the trader arriving at t. Thus, given that the decision
rule � ∈ � also maps the private valuations of the traders in the following periods t + 1 through t + M
to their optimal trading strategies and that limit orders last for M periods, we  can then compute
the conditional execution probabilities � of all feasible limit orders that can be submitted at time t
in any state st ∈ ˝.  We  will illustrate this point via a numerical example (where M = 2) in the next
section.

Initially, the algorithm starts with an arbitrary decision rule or order placement strategy �o(st) =
{�b,o

i
(st), �s,o

i
(st), i = 1, . . . , N}st∈˝. This initial trading strategy consists of a monotone sequence of

indifference valuations and the associated decision rule defined in Proposition 2.11 We assume that
initially, none of the feasible sell order prices ps

K < · · · < ps
N and feasible buy order prices pb

L > · · · > pb
1

are dominated at the very beginning of the algorithm, i.e., for any feasible buy or sell order price in any
state st, there exists a trader with private value u for whom it is optimal to place that order in state
st.12

The next step of the algorithm is to determine the conditional execution probability of any feasi-
ble limit order at any given state, � 1(st) = {� b,1

i
(st), � s,1

j
(st), i = 1, . . . , Lst ; j = Kst , . . . , N} given the

initial trading strategy �o(st). Thus, in general, at the nth iteration of the algorithm, this step involves
the determination of the trading opportunities � n(st, �n−1(st)) (in any state st) implied by the order
placement strategies �n−1(st) derived at the previous (n − 1)th iteration. After finding � 1(st) (� n(st))
for all st ∈ ˝,  the next step is to determine the optimal trading strategy �1(st) (�n(st)) for all st ∈  ̋ as
described in Proposition 2. This step of the algorithm requires in many cases (states of the market)
the iterated elimination of some dominated order choices which the trader would never find optimal
in state st regardless of her private valuation u. This process of iteratively eliminating the dominated
order choices reduces the set of feasible buy and sell order choices in a state st to a set of price quotes
and their associated order types, which an agent can find optimal in that state of the market given her
private valuation u and the trading opportunities � n(st).

These steps constitute a single iteration of the algorithm. They are then iterated until the optimal
trading strategy �n(st) and the trading opportunities � n(st) converge to some stationary limit points
�∗(st) and � ∗(st), respectively, for all states st ∈ ˝.

4. An illustrative example

Suppose that the private valuation u of any trader t is drawn independently from the uniform
distribution with support [29, 34], and the price set (with N = 4) is equal to P = {p1 = 30, p2 = 31, p3 = 32,
p4 = 33}. Each unexecuted limit order can last up to M = 2 periods. Assume that upon arriving in the
market at time t, the trader t finds the limit order book empty, i.e., st = ω1 = {0, 0, 0, 0}. Given the
underlying probability distribution of a trader’s private valuation and rationally expecting that any
trader will use the same initial decision rule �o(st) given by

{�s,o
1 = 29.5, �s,o

2 = 30,  �s,o
3 = 30.5, �s,o

4 = 31,  �b,o
1 = 32,  �b,o

2 = 32.5, �b,o
3 = 33,  �b,o

4 = 33.5}

11 The initial trading strategy �o(st) is not necessarily a member of the space of the optimal order placement decision rules �.
In  other words, different from the construction in Proposition 2, �o(st) is not derived from the available trading opportunities
in  the market characterized by a set of conditional execution probabilities � s,o

k
(st ), � b,o

l
(st ). Although we denote this initial

sequence �o(st) as a function of the state st , it can be state independent as well, i.e., �o(st) = �o for all st ∈ ˝.  In fact, we  first tested
our  algorithm by using various state independent rules and then switched to randomized state dependent initial rules in order
to  test the robustness of our convergence results. We  verified that the final results obtained after the algorithm converges to
the  steady state do not depend on the initial trading strategy.

12 At the first iteration, one can also specify a no-order region, where �b,o
1 (st ) > �s,o

N
(st ), although it follows from Proposition 2

that  the no-order strategy is dominated in our setting with no winner’s curse risk. Therefore, no-order placement is not a part
of  optimal trading strategies in subsequent iterations.
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for all st ∈ ˝,  she can infer the conditional execution probabilities of all feasible orders she could
submit in each state st, which are denoted by � 1(�o(st)) = {� b,1

i
(st), � s,1

j
(st)}, where i = 1, . . . , Lst and

j = Kst , . . . , 4.
We  will illustrate this simple computation only for � b,1

3 (st), which is the conditional execution
probability of a limit buy order submitted at price p3 = 32, when the limit order book is in state ω1 = {0,
0, 0, 0}. After submitting this order at time t, the limit order book will be in the following state at time
t + 1:

st+1 = ω4 = {0, 0, +1, 0}. (21)

Then, the probability that this limit buy order is executed at time t + 1 (matched by a market sell
order submitted at p3) is equal to F(�s,o

3 ) = F(30.5) = (30.5 − 29)/(34 − 29) = 0.3, given that trader
t + 1 will use the trading strategy �o. Then, with probability 0.7, the outstanding limit order at price p3
will not be executed at time t + 1. Consequently, it can be executed at time t + 2 only in the following
cases13:

1. Trader t + 1 submits a limit buy order at p1 with probability F(�b,o
2 ) − F(�b,o

1 ) = (32.5 − 32)/(34 −
29) = 0.1 and st+2 = ω27 = { +1, 0, +2,  0}.

2. Trader t + 1 submits a limit buy order at p2 with probability F(�b,o
3 ) − F(�b,o

2 ) = (33 − 32.5)/(34 −
29) = 0.1 and st+2 = ω29 = {0, + 1, +2,  0}.

3. Trader t + 1 submits a limit buy order at p3 with probability F(�b,o
4 ) − F(�b,o

3 ) = (33.5 − 33)/(34 −
29) = 0.1 and st+2 = ω20 = {0, 0, (+ 1, +2), 0}.

4. Trader t + 1 submits a limit sell order at p4 with probability F(�s,o
4 ) − F(�s,o

3 ) = (31 − 30.5)/(34 −
29) = 0.1 and st+2 = ω55 = {0, 0, +2,  − 1}.

5. Trader t + 1 does not submit any order with probability F(�b,o
1 ) − F(�s,o

4 ) = (32 − 31)/(34 − 29) = 0.2
and st+2 = ω12 = {0, 0, +2,  0}.

In all these five cases, the bid price b(st+2) is equal to p3 at time t + 2, and the conditional probability
of execution at time t + 2 is therefore equal to the probability that trader t + 2 submits a market sell
order at p3, which is equal to F(�s,o

3 ) = F(30.5) = 0.3. Thus, given the decision rule �o and by back-
ward induction, the execution probability of a limit buy order submitted at price p3 at time t in state
st = ω1 = {0, 0, 0, 0} is equal to

� b,1
3 (st) = P(execution at time t + 1) + P(execution at time t + 2)

= 0.3 + (4 × 0.1 × 0.3 + 0.2 × 0.3) = 0.48. (22)

The same logic can be applied to find the conditional execution probabilities � n of any feasible order
in any state implied by the agents’ trading strategy �n−1.14

Next we consider an example for the next step of the algorithm that maps the agent’s private
valuation u into her optimal trading strategy �n(� n(st)) given the trading opportunities � n(st) available
in state st. Now, we assume that upon arriving in the market at time t, the trader t finds the book in state
ω51 ∈ ˝,  i.e., ω51 = { +2, 0, − 1, 0}, where a(ω51) = p3 and b(ω51) = p1. Then, the trader infers the trading
opportunities � s,1(st) = {1.00, 0.48, 0.16, 0.07} and � b,1(st) = {0.18, 0.36, 1.00, 0} as shown above. Note
that in state ω51, the agent cannot submit a buy order at p4 because the ask price is equal to p3, so we
set � b,1

4 = 0.
Given the conditional execution probabilities � 1(st) in state ω51, our algorithm initially assumes

that all feasible sell order choices at prices ps
1, . . . , ps

4 and buy order choices at prices pb
1, . . . , pb

3
can be optimal for some traders, and applies the decision rules given in Proposition 2 to find a

13 Trader t + 1 can also submit a limit buy order at p4. But if this occurs, the existing limit buy order at p3 (submitted at time t)
has  zero probability of execution at time t + 2 due to the price priority rule.

14 This line of analysis can be also generalized to the case where limit orders last for M periods where M > 2. In this paper, we
also  analyze the case when M = 3.
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monotone sequence of threshold valuations �1(� 1(st)) that characterizes the optimal trading strat-
egy of the trader as a function of her private value. This yields the following sequence in our
example:

{�s,1
1 = 29.08,  �s,1

2 = 30.50,  �s,1
3 = 31.22,  �s,1

4 = 30.84,  �b,1
1 = 30.84,  �b,1

2 = 32.00,  �b,1
3 = 32.56}

However, it follows that given the trading opportunities � 1(ω51), the region (�s,1
3 (ω51), �s,1

4 (ω51)] =
(31.22, 30.84] is not well defined, and submitting a limit sell order at price p4 in state ω51 is dominated
by submitting a limit sell order at p3 or a limit buy order at p1. In such cases, where the algorithm finds
dominated order choices, it iteratively eliminates them from consideration until the resulting final
sequence of indifference valuations is monotone. In this case, for instance, the algorithm determines
the private valuation u∗ that makes the trader indifferent between submitting a limit sell order at price
p3 and a limit buy order at price p1.

u∗ = � b,1
1 (ω51)p1 + � s,1

3 (ω51)p3

� b,1
1 (ω51) + � s,1

3 (ω51)
= 0.18 × 30 + 0.16 × 32

0.18 + 0.16
= 30.94.  (23)

Setting �s,1
3 = �s,1

4 = �b,1
1 = u∗ = 30.94, the algorithm determines the optimal trading strategy15

�1(� 1(ω51)) = {29.08,  30.50,  30.94,  30.94,  30.94,  32.00,  32.56}. (24)

After finding the optimal trading strategy �1(� 1(st)) for all states st ∈  ̋ in this fashion, the first iter-
ation of the algorithm is completed. These iterations continue until we  obtain convergence for the
optimal strategies �n(st) and conditional execution probabilities � n(st) respectively. The convergence
limits �∗(st) and � ∗(st) for all st ∈  ̋ characterize the symmetric stationary equilibrium of our dynamic
limit order trading game. In our specific example, the conditional execution probabilities and optimal
strategies for st = ω51 converge to

� s,∗(ω51) = {1.00, 0.8138, 0.2025, 0}, � b,∗(ω51) = {0, 0.4618, 1.00, 0},

�∗(ω51) = {29, 30.6687, 31.3049, 31.3049, 31.3049, 31.3049, 32.8580}. (25)

Thus, we can characterize the optimal trading strategy �∗(ω51) in state ω51 = { +2, 0, − 1, 0} as follows.
It is never optimal for a trader to submit sell orders at prices p1 = 30 and p4 = 33 and buy orders at price
p1 = 30.16 If the trader’s private value u is in the interval [29, 30.6687], she will submit a limit sell order
at p2 = 31 with an execution probability of 0.8138. If u ∈ (30.6687, 31.3049], she will submit a limit sell
order at p3 = 32 with an execution probability of 0.2025.17 If u ∈ (31.3049, 32.8580], she will submit a
limit buy order at p2 = 31 with an execution probability of 0.4618. Finally, if u ∈ (32.8580, 34], she will
submit a market buy order at p3 = 32.

15 Note that although placing a limit sell order at p4 is dominated, we  still set �s,1
4 = 30.94 for notational and computational

convenience and it does not affect the following iterations of the algorithm.
16 Consider why it is never optimal to submit a market sell order at p1 = 30. Note that since the support of the probability

distribution for private value u is [29, 34], the largest net payoff from selling at p1 = 30 will be realized by a trader with the
minimum possible private value u = 29, which is equal to p1 − u = 1. However, since the conditional execution probability of a
limit sell order placed at p2 = 31 is substantial, i.e., � s,∗

2 = 0.8138, the trader with u = 29 will realize a larger expected payoff of
0.8138 × (31 − 29) = 1.6276 from placing a limit sell order at p2. Therefore, she will prefer to submit a limit sell order at p2 rather
than  submit a market sell order at p1. The same comparison also applies to all traders with u ∈ [29, 30]. However, we  can show
that,  ceteris paribus, if the trader’s private value distribution has a wider support with [27, 36], submitting a market sell order
at  p1 in state ω51 becomes optimal for all traders with u ∈ [27, 28.0814].

17 Note that in state ω51, the conditional execution probability (0.8138) of a limit sell order placed at p2 = 31 is much higher
than  that (0.2025) of a limit sell order placed at p3 = 32. First, a sell order p2 has price priority over a sell order at p3. Second, due
to  time priority, a limit sell order placed at p3 in state ω51 can only be executed after the execution or expiration of the existing
limit sell order (with age 1) at p3. Hence, the range of private values, [29, 30.6687], in which it is optimal to submit a limit sell
order  at p2 is substantially wider than the range of private values, (30.6687, 31.3049], in which it is optimal to submit a limit
sell  order at p3.
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5. Results of the comparative dynamics analysis

We  apply the algorithm explained in the previous section to solve for the equilibrium of our limit
order market under various initial conditions and parameter specifications. Our objective is to address
the following set of questions in our comparative dynamics analysis of the equilibrium limit order
book. Does the numerical algorithm converge to a unique equilibrium given the underlying probability
distribution of private valuations and the price grid? What is the limiting probability distribution of
the Markov chain that characterizes the equilibrium limit order book, and which states of the book
are visited most frequently or less frequently in the steady state? What is the effect of varying the
dispersion of the private value (liquidity demand) distribution of the traders on the steady state of
the equilibrium limit order book? What is the average conditional bid–ask spread in equilibrium and
how does it vary in response to changes in the dispersion of traders’ liquidity demand? What is the
probability that the limit order book is empty on at least one side? What are the relative frequencies
of limit orders and market orders respectively in the equilibrium order flow, and what is the effect of
a change in traders’ propensity to demand or supply liquidity on the choice between limit and market
orders? What is the effect of increasing the life span of a limit order from two  (M = 2) periods to three
(M = 3) periods on the steady state of the equilibrium limit order book and the average conditional
bid–ask spread? We  provide answers to these questions in this section.

We find that, for a given uniform probability distribution of private valuations with support [A,
B] and a given price grid P = {p1, . . .,  p4}, our algorithm converges to a unique set of equilibrium
indifference valuations �∗ and conditional execution probabilities � ∗. It does not matter whether the
initial decision rules are state-independent or state-dependent. We  find that the algorithm converges
to the same unique equilibrium regardless of any type of feasible initial decision rule.

The equilibrium limit order book is characterized by the steady state distribution of the Markov
chain that is obtained from the transition probability matrix � of the states st ∈ ˝.  After having
determined the optimal trading strategy �∗(st) in equilibrium and given the private value probability
distribution F of an agent, it is straightforward to derive the conditional order submission probabilities
as explained in Section 3.1 and therefore, the one-step transition probability matrix � of the equilib-
rium Markov chain. From �,  we derive the limiting probability distribution of the states of the limit
order book in equilibrium.

In order to analyze the properties of the equilibrium limit order book, we  first specify the price grid
P, which is equal to {30, 31, 32, 33}. Then, we vary the support [A, B] of the uniform probability distri-
bution of the private valuation of the trader, where A = p1 − w and B = p4 + w. We  run the algorithm
each time we chose a different closed interval [A, B] for the probability distribution of the agent’s val-
uation by varying the dispersion parameter w. After obtaining the equilibrium indifference valuations
�∗ and the conditional execution probabilities � ∗, we  solve for the limiting distribution of the Markov
chain � and obtain some summary statistics that characterize the equilibrium limit order book.

5.1. Equilibrium frequencies of limit order book states

In the first model specification, which is reported in Table 1 (w = 1), the support of the private
value distribution is [29, 34], and limit orders last for M = 2 periods. First, we notice that 19 out of 61
states are visited with positive probability in equilibrium. The most frequently hit state of the limit
order book is the empty book state ω1, which is visited with probability 0.2309. When we  check the
state transition matrix, which shows all the feasible two-way transitions among 61 states, we note
that there are 40 different states from which the limit order book can make a transition to the empty
book state ω1 in the next period.18 For any other state, the number of neighboring states from which

18 For example, consider all states where there is only one outstanding limit order on one side of the book. If in such a state, the
existing limit order is matched with a market order in the next period, the order book will revert to state ω1. Further, consider
all  states where the are two existing limit orders on the same side of the book and the younger limit order with age 1 has price
precedence over the older limit order with age 2. If the younger limit order is matched with a market order coming from the
opposite side, the order book will also revert to state ω1, since the older limit order with age 2 expires at the end of the current
period.
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Table 1
Probability distribution of private valuation: uniform(29,34) with w = 1.

Price grid: P = {30, 31, 32, 33}; maximum life span of a limit order: M = 2

Rank Code Prob. P1 P2 P3 P4 Prob. market buy Prob. market sell

19 out of 61 states visited in equilibrium
1 ω1 0.2309 0 0 0 0
2 ω3 0.0821 0 +1 0 0 0.2284
3 ω8 0.0821 0 0 −1 0 0.2284
4  ω4 0.0686 0 0 +1 0 0.5689
5 ω7 0.0686 0 −1 0 0 0.5689
6 ω20 0.0472 0 0 (+1,+2) 0 0.5689
7 ω23 0.0472 0 (− 1, − 2) 0 0 0.5689
8  ω35 0.0461 0 +1 −2 0 0.3492 0.2284
9 ω53 0.0461 0 +2 −1 0 0.2284 0.3492

10  ω41 0.0409 0 −1 −2 0 0.5689
11  ω47 0.0409 0 +2 +1 0 0.5689
12  ω11 0.0323 0 +2 0 0 0.2846
13  ω16 0.0323 0 0 −2 0 0.2846
14  ω12 0.0268 0 0 +2 0 0.5464
15  ω15 0.0268 0 −2 0 0 0.5464
16 ω29 0.0204 0 +1 +2 0 0.5663
17 ω59 0.0204 0 −2 −1 0 0.5663
18  ω19 0.0202 0 (+1,+2) 0 0 0.2284
19  ω24 0.0202 0 0 (− 1, − 2) 0 0.2284

States never visited in equilibrium (bottom 5)
57  ω56 0 −2 −1 0 0 0.7286
58  ω57 0 −2 0 −1 0 0.7103
59 ω58 0 −2 0 0 −1 0.6928
60 ω60 0 0 −2 0 −1 0.5464
61  ω61 0 0 0 −2 −1 0.2846

Conditional averages
0.3851 0.3851

Average bid–ask spread Number of hit states (both sides of the book nonempty)
1  2

Probability that the book is nonempty on both sides
9.22%

Buy Sell Total

P1 P2 P3 P4 P1 P2 P3 P4

Average conditional execution probabilities of limit orders
0.0000 0.3060 0.7299 0.8816 0.8816 0.7299 0.3060 0.0000

Percentages of submitted orders
0.00% 28.41% 21.59% 0.00% 0.00% 21.59% 28.41% 0.00% 100.00%

Limit buy orders: 32.55% Limit sell orders: 32.55%
Market buy orders: 17.45% Market sell orders: 17.45%

the order book can make a transition to that specific state varies between 1 and 8. Thus, the empty
book state ω1 is a natural starting point, and it is not surprising that it is the most often visited state
in equilibrium.

When we look at the other 18 states visited in equilibrium and their frequency rankings in Table 1,
we note that traders prefer to submit their buy or sell orders either at p2 or at p3. In fact, no orders
are submitted in equilibrium at prices p1 = 30 and p4 = 33 (see also “Percentage of Submitted Orders”
in Table 1). This can be explained by the fact that in this particular specification, the support of the
private value distribution, [29, 34], is very tightly placed around the price bin P. Therefore, in all states
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of the limit order book, submitting a buy order at p4 is dominated by submitting a buy order at p3,
even though the conditional execution probability of a buy order submitted at p4 is always greater
than that of a buy order submitted at p3. Similarly, submitting a sell order at p1 is always dominated
by submitting a sell order at p2.

Without loss of generality, we can explain the above result by taking a closer look to the optimal
order placement strategies �∗(ω1) in state ω1, i.e., the empty limit order book. Note that equilibrium
trading opportunities in ω1 are given by � b,∗(ω1) = {0, 0.366, 0.814, 0.926} and � s,∗(ω1) = {0.926, 0.814,
0.366, 0} on the buy and sell sides respectively. Then, we find that the optimal trading strategy is given
by

�∗(ω1) = {29, 30.183, 31.5, 31.5, 31.5, 31.5, 32.817, 34}.

Thus, traders with private values in [29, 30.183] submit limit sell orders at p2 = 31, which accounts
for 23.66% of all submitted orders in state ω1. Traders with private values in (30.183, 31.5] submit
limit sell orders at p3 = 32, accounting for another 23.66%. Traders with private values in (31.5, 32.817]
submit limit buy orders at p2 = 31 (26.34%). Finally, traders with private values in (32.817, 34] submit
limit buy orders at p3 = 32, accounting for another 23.66% of all orders submitted in ω1.19 The private
value at which a trader is indifferent between submitting a sell order at p1 = 30 or at p2 = 31 is equal
to 22.73, which is less than A = 29. Similarly, the private value at which a trader is indifferent between
submitting a buy order at p3 = 32 or at p4 = 33 is equal to 40.27, which is greater than B = 34.20 Since
these indifference values are out of the range of the private value support [29, 34], limit buy order
submissions at p4 and limit sell order submissions at p1 are dominated. In other words, in this range
of private values, the trade-off between potential trading gains (from a lower bid price or a higher ask
price relative to the trader’s private value) and execution probability tilts in favor of potential trading
gains.

Since it is never optimal for traders to submit a sell order at p1 or a buy order at p4 (i.e., relatively
aggressive order strategies are not optimal) in the equilibrium shown in Table 1, it is also never optimal
to submit a limit buy order at p1 or a limit sell order at p4 on the other side of the book respectively
(these latter limit orders have zero execution probabilities). Hence, the most conservative limit order
strategies are also dominated in the equilibrium shown in Table 1.

When we further look at the equilibrium frequency rankings of different states in Table 1, we notice
that the empty book state ω1 is followed by ω3 = {0, + 1, 0, 0}, ω8 = {0, 0, − 1, 0}, ω4 = {0, 0, + 1, 0}, and
ω7 = {0, − 1, 0, 0}. One of these states will be visited right after ω1 (see footnote 19). Suppose the limit
order book is in state ω3. Then, we find that

� b,∗(ω3) = {0, 0.203, 0.814, 0.926}, � s,∗(ω3) = {0, 1, 0.462, 0},

�∗(ω3) = {0, 30.142, 31.695,  31.695,  31.695, 31.695,  32.331, 34}

in equilibrium.21 Note that in this state, a limit buy order submitted at p2 = 31 is much less likely to
be executed than a limit buy order submitted at p3 = 32 (0.203 vs. 0.814 respectively), since there is
already an existing limit buy order at p2, which has time priority. Hence, if a trader has a sufficiently
high private value for the asset, she will submit a limit buy order at p3 in order to gain price priority over
the existing limit buy order at p2. Therefore, in state ω3 = {0, + 1, 0, 0}, we  observe that the percentage
of buy order submission at p3, 33.37%, is much greater than that at p2, 12.72%. Consistent with this
finding, we note in Table 1 that state ω47 = {0, + 2, + 1, 0} is more than twice likely to be visited than

19 These order submission percentages in state ω1 also help us explain why states ω3 = {0, + 1, 0, 0} and ω8 = {0, 0, − 1, 0} are
slightly more likely to be observed than the states ω4 = {0, 0, + 1, 0} and ω7 = {0, − 1, 0, 0} respectively as shown in Table 1.

20 We  solve the following two equations to find these indifference values: 0.926(30 − u) = 0.814(31 − u) and
0.926(u  − 33) = 0.814(u − 32).

21 Thus, traders with private values in [29, 30.142] submit market sell orders at p2 = 31, 22.84% of all submitted orders in state
ω3. Traders with private values in (30.142, 31.695] submit limit sell orders at p3 = 32, accounting for another 31.06%. Traders
with  private values in (31.695, 32.331] submit limit buy orders at p2 = 31, accounting for 12.72%. Finally, traders with private
values in (32.331, 34] submit limit buy orders at p3 = 32, accounting for 33.37%.



114 O. Bayar / Journal of Economics and Business 66 (2013) 98– 124

state ω19 = {0, (+ 1, + 2), 0, 0}.22 Symmetric arguments also apply to state ω8 = {0, 0, − 1, 0} as a starting
point, and help us explain the greater relative likelihood of state ω41 = {0, − 1, − 2, 0} over ω24 = {0, 0,
(− 1, − 2), 0} in the equilibrium shown in Table 1.

One can also note in state ω3 = {0, + 1, 0, 0} that although the execution probability of a limit sell
order at p3 is relatively low compared to that of a market sell order at p2 (0.462 vs. 1 respectively),
there is still a substantial mass of patient sellers (accounting for 31.06% of all submitted orders in ω3),
who are willing to provide liquidity by placing limit sell orders at price p3 in exchange for a higher
potential trading gain in future periods. Therefore, state ω53 = {0, + 2, − 1, 0}, which follows ω3 after a
limit sell order submission at p3, is also one of the more likely observed states in Table 1.23 Symmetric
arguments also apply to state ω35 = {0, + 1, − 2, 0}, which follows state ω8 = {0, 0, − 1, 0} after a limit
buy order submission at p2.

Next, let us consider state ω4 = {0, 0, + 1, 0}, which is also one of the most frequently visited states
in the equilibrium shown in Table 1. In this state, we  find that

� b,∗(ω4) = {0, 0.184, 0.556, 0.926}, � s,∗(ω4) = {0, 0, 1, 0},

�∗(ω4) = {0, 0, 31.845, 31.845, 31.845, 31.845, 32.495, 34}
in equilibrium.24 One should note that in this state, limit buy order submissions at p3 = 32 are much
more likely than those at p2 = 31 (order submission percentages are 30.10% and 13.01% respectively),
since due to price priority, the execution probability of a limit buy order at p2, 0.184, is much smaller
than that of a limit buy order at p3, 0.556. Therefore, state ω20 = {0, 0, (+ 1, + 2), 0} is much more likely
to be observed than state ω29 = {0, + 1, + 2, 0} in equilibrium, as shown in Table 1.25,26 Symmetric
arguments also apply to state ω7 = {0, − 1, 0, 0} as a starting point, and help us explain the greater
relative likelihood of state ω23 = {0, (− 1, − 2), 0, 0} over ω59 = {0, − 2, − 1, 0} in the equilibrium shown
in Table 1.

Finally, we notice that in the equilibrium shown in Table 1, state ω11 = {0, + 2, 0, 0} is observed after
market orders hit the limit order book in states ω35 = {0, + 1, − 2, 0} (market buy order at p3), ω19 = {0,
(+ 1, + 2), 0, 0}, and ω29 = {0, + 1, + 2, 0}, which we discussed above. Similarly, state ω12 = {0, 0, + 2, 0}
is observed after a market sell order at p3 hits the limit order book in state ω20 = {0, 0, (+ 1, + 2), 0}.27

In subsequent model specifications, we notice that as the dispersion in traders’ private valuations
increases (i.e., the parameter w increases and the private value support [A, B] widens), the percentage
of orders submitted at prices p1 and p4 gradually increases and one can observe states with depths at
prices p1 and p4 more frequently in the equilibrium limit order book. Corresponding to this regularity,
we see that the overall number of states ever visited in the equilibrium increases, reaching 53 in the
model specification shown in Table 2 (w = 4), where the support of the private value distribution is
[26, 37].

As w increases, we also find that the equilibrium frequency rankings of certain states are affected.
For example, submitting a limit buy order at p4 = 33 becomes optimal for an increasingly larger mass
of traders (with larger private values) in state ω4 = {0, 0, + 1, 0} as w increases. Similarly, submitting
a limit sell order at p1 = 30 becomes optimal for an increasingly larger mass of traders (with smaller

22 If a trader submits a limit buy order at p3 (p2) in state ω3, the next state will be ω47 (ω19). Note also that transitions to
state ω47 are also possible from states ω19 itself and ω29 = {0, + 1, + 2, 0}, which are observed with positive probability in the
equilibrium shown in Table 1. Similarly, transitions to state ω19 are also possible from ω19 itself, ω29, and ω35 = {0, + 1, − 2, 0}.

23 Note that transitions to ω53 can also follow ω19 and ω35, which are observed with positive probability in the equilibrium
shown in Table 1.

24 Thus, traders with private values in [29, 31.845] submit market sell orders at p3 = 32 (56.89% of all submitted orders in ω4).
Traders with private values in (31.845, 32.495] submit limit buy orders at p2 = 31 (13.01% of all orders in ω4). Finally, traders
with  private values in (32.495, 34] submit limit buy orders at p3 = 32 (30.10% of all orders in ω4).

25 Note that if a trader submits a limit buy order at p3 (p2) in state ω3, the next state will be ω20 (ω29).
26 Transitions to state ω20 can also occur from states ω20 itself and ω47, which are observed with positive probability in the

equilibrium shown in Table 1.
27 By symmetry, state ω16 = {0, 0, − 2, 0} is observed after market orders hit the limit order book in states ω53 = {0, + 2, − 1, 0}

(market sell order at p2), ω24 = {0, 0, (− 1, − 2), 0}, and ω59 = {0, − 2, − 1, 0}, which we  discussed above. State ω15 = {0, − 2, 0, 0}
is  observed after a market buy order at p2 hits the limit order book in state ω23 = {0, (− 1, − 2), 0, 0}.
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Table 2
Probability distribution of private valuation: uniform (26,37) with w = 4.

Price grid: P = {30, 31, 32, 33}; maximum life span of a limit order: M = 2

Rank Code Prob. P1 P2 P3 P4 Prob. market buy Prob. market sell

Most frequently visited states in equilibrium
1 ω1 0.2674 0 0 0 0
2 ω3 0.0798 0 +1 0 0 0.3243
3 ω8 0.0798 0 0 −1 0 0.3243
4 ω5 0.0395 0 0 0 +1 0.6021
5  ω6 0.0395 −1 0 0 0 0.6021
6 ω4 0.0316 0 0 +1 0 0.5071
7 ω7 0.0316 0 −1 0 0 0.5071
8  ω41 0.0302 0 −1 −2 0 0.5071
9 ω47 0.0302 0 +2 +1 0 0.5071

10  ω21 0.0208 0 0 0 (+1,+2) 0.6021
11  ω22 0.0208 (− 1, − 2) 0 0 0 0.6021
12  ω38 0.0208 −1 −2 0 0 0.6021
13  ω49 0.0208 0 0 +2 +1 0.6021
14  ω11 0.0206 0 +2 0 0 0.3848
15  ω16 0.0206 0 0 −2 0 0.3848
16 ω35 0.0154 0 +1 −2 0 0.4267 0.3243
17 ω53 0.0154 0 +2 −1 0 0.3243 0.4267
18  ω39 0.0138 −1 0 −2 0 0.6021
19  ω48 0.0138 0 +2 0 +1 0.6021
20  ω13 0.0125 0 0 0 +2 0.5813
21  ω14 0.0125 −2 0 0 0 0.5813
22  ω29 0.0103 0 +1 +2 0 0.5109
23 ω59 0.0103 0 −2 −1 0 0.5109
24 ω30 0.0099 0 +1 0 +2 0.6018
25 ω57 0.0099 −2 0 −1 0 0.6018
26  ω33 0.0099 +1 0 −2 0 0.3848 0.0747
27  ω54 0.0099 0 +2 0 −1 0.0747 0.3848
28  ω2 0.0080 +1 0 0 0 0.0747
29  ω9 0.0080 0 0 0 −1 0.0747

Least frequently visited states in equilibrium (bottom 10)
44 ω43 0.0032 0 0 −1 −2 0.3243
45 ω44 0.0032 +2 +1 0 0 0.3243
46  ω34 0.0010 1 0 0 −2 0.2224 0.0747
47  ω52 0.0010 +2 0 0 −1 0.0747 0.2224
48  ω40 0.0010 −1 0 0 −2 0.6021
49  ω46 0.0010 +2 0 0 +1 0.6021
50  ω42 0.0008 0 −1 0 −2 0.5071
51  ω45 0.0008 +2 0 +1 0 0.5071
52  ω20 0.0004 0 0 (+1,+2) 0 0.5071
53  ω23 0.0004 0 (− 1, − 2) 0 0 0.5071

States never visited in equilibrium
54 ω18 0 (+1,+2) 0 0 0 0.0747
55  ω25 0 0 0 0 (− 1, − 2) 0.0747
56  ω26 0 +1 +2 0 0 0.3561
57  ω27 0 +1 0 +2 0 0.5169
58  ω28 0 +1 0 0 +2 0.5813
59  ω58 0 −2 0 0 −1 0.5813
60  ω60 0 0 −2 0 −1 0.5169
61  ω61 0 0 0 −2 −1 0.3561

Conditional averages
0.4026 0.4026

Average bid–ask spread
1.433

Number of hit states (both sides of the book nonempty)
12
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Table  2 (Continued )

Price grid: P = {30, 31, 32, 33}; maximum life span of a limit order: M = 2

Rank Code Prob. P1 P2 P3 P4 Prob. market buy Prob. market sell

Probability that the book is nonempty on both sides
7.68%

Buy Sell Total

P1 P2 P3 P4 P1 P2 P3 P4

Average conditional execution probabilities of limit orders
0.1831 0.3795 0.5515 0.7913 0.7913 0.5515 0.3795 0.1831

Percentages of submitted orders
9.78% 17.28% 12.80% 10.14% 10.14% 12.80% 17.28% 9.78% 100.00%

Limit buy orders: 32.15% Limit sell orders: 32.15%
Market buy orders: 17.85% Market sell orders: 17.85%

private values) in state ω7 = {0, − 1, 0, 0}.28 Consequently, in the equilibria of specifications with
w > 1, we find that states ω49 = {0, 0, + 2, + 1} and ω38 = { −1, − 2, 0, 0} are visited more frequently
(their frequency ranks gradually increase), whereas states ω20 = {0, 0, (+ 1, + 2), 0} and ω23 = {0, (− 1,
− 2), 0, 0} are visited gradually less often in equilibrium as w increases.29 Consistent with our earlier
intuition that the rules of price priority and time priority are important determinants of equilibrium
state frequencies, we also find that states ω49 = {0, 0, + 2, + 1} and ω38 = { −1, − 2, 0, 0} are much more
likely to be visited than states ω29 = {0, + 1, + 2, 0} and ω59 = {0, − 2, − 1, 0} respectively, as shown in
the equilibrium of the model in Table 2.

As shown in Table 2, we find that states ω5 = {0, 0, 0, + 1}, ω6 = { −1, 0, 0, 0}, ω2 = { +1, 0, 0, 0}, and
ω9 = {0, 0, 0, − 1} are in the list of states visited with positive probability in equilibrium when w = 4,
even though they are visited with zero limiting probability in equilibrium when w ≤ 3. When we  look
at the optimal order strategies �∗(ω1) of a trader arriving at the empty order book state ω1 when w = 4,
we find that submitting a limit buy order at p4 and submitting a limit sell order at p1 become optimal
strategies for some very impatient traders for the very first time

� b,∗(ω1) = {0.190, 0.434, 0.608, 0.842}, � s,∗(ω1) = {0.842, 0.608, 0.434, 0.190},

�∗(ω1) = {27.393, 28.505, 31.225, 31.5, 31.5, 31.775, 34.495, 35.607}.
in equilibrium.30 In other words, these two strategies are dominated for any trader arriving in state ω1
in all specifications with w ≤ 3, but not so when w ≥ 4. Thus, when [A, B] = [26, 37], there exist some
traders with extremely high (low) private values who demand immediacy by submitting buy (sell)
limit orders at p4 (p1), for whom the trade-off between execution probability and the size of potential
trading gain tilts in favor of execution probability. Consequently, we observe that states ω5 = {0, 0, 0,
+ 1} and ω6 = { −1, 0, 0, 0} are among often visited states in the equilibrium shown in Table 2. At the
same time, on the opposite sides of the order book, we find that it becomes optimal for some relatively
small mass of traders with moderate private values to submit a limit buy order at p1 or a limit sell
order at p4 in state ω1 to match the liquidity demands of traders with extreme private values. Hence,
these most conservative limit order strategies are not dominated anymore in the equilibrium shown

28 These order strategies first become optimal for some traders in these states when w = 2.
29 Note that in the model specification shown in Table 2, ω20 and ω23 are the least often visited states in equilibrium.
30 Thus, if u ∈ [26, 27.393], traders submit limit sell orders at p1 (12.66% of all submitted orders). If u ∈ (27.393, 28.505], they

submit limit sell orders at p2 (10.11%). If u ∈ (28.505, 31.225], they submit limit sell orders at p3 (24.72%). If u ∈ (31.225, 31.5], they
submit limit sell orders at p4 (2.50%). If u ∈ (31.5, 31.775], they submit limit buy orders at p1 (2.50%). If u ∈ (31.775, 34.495], they
submit  limit buy orders at p2 (24.72%). If u ∈ (34.495, 35.607], they submit limit buy orders at p3 (10.11%). Finally, if u ∈ (35.607,
37], they submit limit buy orders at p4 (12.66%).
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in Table 2, and we observe that states ω2 = { +1, 0, 0, 0}, and ω9 = {0, 0, 0, − 1} are visited with positive
probability in equilibrium.

As a general rule, we  note that when we compare two  states, where there are two  limit orders at the
same side of the book in each state, we observe that the state where the limit order with age 1 outbids
the other limit order with age 2 is always observed more often in equilibrium than the state where
the limit order with age 2 outbids the other limit order with age 1. Thus, due to time and price priority
rules, the depth of the quotes at a given state of the limit order book is important in determining the
equilibrium optimal trading strategy of the arriving trader. For example, if the current state of the
market is ω8 = {0, 0, − 1, 0}, which is among the most frequently observed equilibrium states in all
specifications, then a potential seller is less likely to submit a sell order at p4 or p3 according to our
results. This is intuitive because of both the time priority and the price priority of the existing limit
order at p3. Hence, we observe that state ω41 = {0, − 1, − 2, 0} is much more likely to be visited in
equilibrium than both ω24 = {0, 0, (− 1, − 2), 0} and ω61 = {0, 0, − 2, − 1} as shown in the equilibria of
Tables 1 and 2. Similarly, state ω47 = {0, + 2, + 1, 0} that follows ω3 = {0, + 1, 0, 0} is much more likely
to be visited in equilibrium than both ω19 = {0, (+ 1, + 2), 0, 0} and ω26 = { +1, + 2, 0, 0} as shown in
Tables 1 and 2 as well.

Finally, when we look at the list of never visited states in the stationary equilibrium of the model
(when w ≤ 4), we observe the following states:

ω18 = {(+1, +2), 0, 0}, ω25 = {0, 0, 0, (−1, −2)},
ω26 = {+1, +2, 0, 0}, ω27 = {+1, 0, +2, 0}, ω28 = {+1, 0, 0, +2},
ω60 = {0, −2, 0, −1}, ω61 = {0, 0, −2, −1}, ω58 = {−2, 0, 0, −1}.

One reason why these states are never observed in equilibrium (for w ≤ 4) is that conditional execution
probabilities of limit buy orders placed at p1 or limit sell orders placed at p4 are very small in many
states when w ≤ 4. In fact, as we mentioned above, it is optimal for some traders to submit a limit
buy order at p1 or a limit sell order at p4 in certain states (e.g., ω1) only if w ≥ 4. Further, submitting a
limit buy order at p1 in state ω2 and submitting a limit sell order at p4 in state ω9 are still dominated
strategies when w = 4, so that states ω18 and ω25 have zero limiting probabilities in equilibrium as
shown in Table 2. In addition, for some of the above states, we note that limit orders with age 1 are
lagging behind limit orders with age 2 in terms of both price priority and time priority rules, which
is the second reason why these states are never observed in equilibrium when w ≤ 4. On the other
hand, Table 2 shows that when w = 4, the following states are observed with small, but albeit positive
probabilities in equilibrium:

ω44 = {+2, +1, 0, 0}, ω45 = {+2, 0, +1, 0}, ω46 = {+2, 0, 0, +1},
ω42 = {0, −1, 0, −2}, ω43 = {0, 0, −1, −2}, ω40 = {−1, 0, 0, −2}.

Note that in these states of the order book, younger limit orders outbid older limit orders at the same
side of the book, which is consistent with expected-utility-maximizing liquidity traders facing price
priority and time priority rules.

5.2. Bid–ask spreads

One of the most important statistics that characterizes liquidity provision in a limit order market is
the average bid–ask spread. A common regularity that we observe in our numerical results for different
specifications of our model is that the average bid–ask spread (conditional on both sides of the book
being nonempty) is monotonically increasing in the dispersion w of traders’ private value distribution.

In our model specifications with N = 4 and M = 2, there are only 12 states in which both sides of
the book are nonempty. In the model specification of Table 1 with w = 1, only two such states are
visited in equilibrium: ω35 and ω53. In this case, the average bid–ask spread is exactly equal to 1
since order submissions at p1 or at p4 are dominated as we explained above when w = 1. Further, the
probability that the book is nonempty on both sides is equal to 0.0922 in this specification. However, as
the private value dispersion parameter w increases, we  find that the number of nonempty two-sided
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states visited in equilibrium increases as well, corresponding to the increase in the overall number
of states observed in equilibrium. In specifications with w ≥ 2, we  find that the percentage of buy
(sell) orders submitted at price p4 (p1) in equilibrium is positive, and this percentage increases with
the dispersion w in private values. In other words, as the dispersion in traders’ private valuations
increases, there starts to exist a larger mass of impatient traders (with larger liquidity demands) on
both tails of the private value distribution, and these traders submit more aggressive limit orders or
market orders at more extreme prices in order to obtain larger execution probabilities in equilibrium,
thereby consuming more liquidity. On the other hand, this increase in liquidity demand is matched
by the liquidity supply of traders with more moderate private values (close to the mean), who start
to find submitting more conservative limit orders (i.e., limit buy orders at p1 and limit sell orders at
p4) more profitable as w increases, since the conditional execution probabilities of such limit orders
increase in equilibrium as well (see Tables 1 and 2).31

Consistent with the above economic intuition, we find that in the equilibrium shown in Table 2 with
w = 4, all 12 states in which both sides of the book are nonempty are visited with positive probability,
and the probability-weighted average bid–ask spread is equal to 1.433. The probability that the book
is nonempty on both sides is equal to 0.0768. In general, we  find that the average bid–ask spread is
increasing in the dispersion in traders’ private valuations for the asset. If w = 2, the average bid–ask
spread is still equal to 1 as ω35 and ω53 are still the only two equilibrium states with both sides being
nonempty. In this specification, the overall number of states visited in equilibrium increases to 25.
Therefore, the probability that the book is nonempty on both sides is equal to 0.0651. If w = 3, the
probability-weighted average bid–ask spread increases to 1.0657, as the number of equilibrium states
with both sides being nonempty increases to 10. In this specification, the overall number of states
visited in equilibrium increases to 41, and the probability that the book is nonempty on both sides is
equal to 0.0577.32

Our findings regarding the average bid–ask spread are also consistent with our results on the steady
state distribution of the limit order book, which we  analyzed in the previous subsection. In our model
specifications with w ≤ 4, the second and third most frequently visited states are ω3 = {0, (+ 1, 1), 0, 0}
and ω8 = {0, 0, (− 1, 1), 0}, whereas if w ≥ 5, those two states are ω5 = {0, 0, 0, (+ 1, 1)}  and ω6 = {(− 1,
1), 0, 0, 0}, respectively. This result is consistent with traders with extreme private values submitting
even more aggressively priced orders as the dispersion in traders’ private valuations further increases
(w ≥ 5). Similarly, we find that for w ≥ 5, conditional execution probabilities of buy (sell) limit orders
at p1 (p4) continue to be increasing with the dispersion parameter w as well, and therefore, traders
with moderate private values (close to the mean) tend to gradually submit more conservative limit
orders at the corners of the price grid P.33

To further investigate the properties of the dynamic equilibrium of the limit order market in our
model, and the average bid–ask spreads in particular, we  allow limit orders to last for three periods,
i.e., we let M = 3 and numerically solve for the equilibrium of our model where the price grid is still
P = {30, 31, 32, 33}  as before. From Eq. (4),  it follows that if N = 4 and M = 3, the total number of states
is equal to S = 369. Table 3 shows the equilibrium of our model when M = 3 and w = 1. The number of
states visited in equilibrium with a positive probability is 65. In 12 of these states, both sides of the
book are nonempty with a probability of 0.1636. Since order submissions at p1 or p4 are also dominated
in all states in this specification with w = 1, the average conditional bid–ask spread is exactly equal
to 1. As the dispersion parameter w increases, buy (sell) order submissions at p4 (p1) start to become

31 Note that as the dispersion parameter w of traders’ private valuations increases from 1 in Table 1 to 4 in Table 2, the size
of  potential trading gains (for traders with extreme private values) increases substantially with respect to the width of the
price grid P and therefore, relative to the tick size. Thus, for some liquidity-demanding traders with extreme private values, the
trade-off between a less advantageous order price and higher execution probability clearly tilts in favor of execution probability.

32 For w ≥ 5, we also find that the average bid–ask spread monotonically increases with the dispersion parameter w. If w =
5  (w = 6), the probability-weighted average bid–ask spread is 1.7880 (2.1279), the number of states visited with positive
probability in equilibrium is 57 (49), and the probability that both sides of the book being nonempty is equal to 0.0747 (0.0661).

33 Note that if the price grid P were not fixed, we would have possibly observed sell (buy) order submissions at prices less
than p1 (more than p4). But since this is not feasible by construction, we observe an overaccumulation of order submissions at
the  corners of the price grid when w ≥ 5, and the conditional execution probabilities of buy (sell) limit orders submitted at p1

(p4) increase substantially when w increases beyond 4.
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Table 3
Probability distribution of private valuation: uniform (29,34) with w = 1.

Price grid: P = {30, 31, 32, 33}; maximum life span of a limit order: M = 3

Rank Code Prob. P1 P2 P3 P4 Prob. market buy Prob. market sell

Most frequently visited states in equilibrium
1  ω1 0.1430 0 0 0 0
2 ω3 0.0563 0 +1 0 0 0.1421
3 ω8 0.0563 0 0 −1 0 0.1421
4 ω4 0.0401 0 0 +1 0 0.5662
5  ω7 0.0401 0 −1 0 0 0.5662
6 ω11 0.0321 0 +2 0 0 0.2022
7 ω16 0.0321 0 0 −2 0 0.2022
8 ω67 0.0313 0 +1 −2 0 0.3351 0.2616
9  ω121 0.0313 0 +2 −1 0 0.2616 0.3351

10 ω19 0.0299 0 +3 0 0 0.2487
11  ω24 0.0299 0 0 −3 0 0.2487
12  ω12 0.0237 0 0 +2 0 0.5580
13  ω15 0.0237 0 −2 0 0 0.5580
14  ω97 0.0233 0 −1 −2 0 0.5662
15  ω115 0.0233 0 +2 +1 0 0.5662
16 ω28 0.0197 0 0 (+1,+2) 0 0.5815
17 ω31 0.0197 0 (− 1, − 2) 0 0 0.5815
18 ω52 0.0166 0 0 (+1,+2,+3) 0 0.5815
19  ω55 0.0166 0 (− 1, − 2, − 3) 0 0 0.5815
20  ω145 0.0143 0 +2 (− 1, − 3) 0 0.2616 0.3351
21  ω247 0.0143 0 (+1,+3) −2 0 0.3351 0.2616
22  ω79 0.0134 0 +1 −3 0 0.3404 0.1421
23  ω175 0.0134 0 +3 −1 0 0.1421 0.3404
24 ω36 0.0109 0 0 (+1,+3) 0 0.5662
25 ω39 0.0109 0 (− 1, − 3) 0 0 0.5662
26  ω103 0.0106 0 −1 −3 0 0.5662
27  ω169 0.0106 0 +3 +1 0 0.5662
28  ω193 0.0104 0 +3 (+1,+2) 0 0.5815
29  ω235 0.0104 0 (− 1, − 2) (− 3) 0 0.5815
30  ω27 0.0101 0 (+1,+2) 0 0 0.1150
31  ω32 0.0101 0 0 (− 1, − 2) 0 0.1150

Least frequently visited states in equilibrium (bottom 6)
60 ω51 0.0023 0 (+1,+2,+3) 0 0 0.1150
61  ω56 0.0023 0 0 (− 1, − 2, − 3) 0 0.1150
62  ω127 0.0017 0 +2 +3 0 0.5497
63  ω211 0.0017 0 −3 −2 0 0.5497
64  ω217 0.0011 0 −3 (− 1, − 2) 0 0.5650
65  ω223 0.0011 0 (+1,+2) +3 0 0.5650

Conditional averages
0.3726 0.3726

Average bid–ask spread Number of hit states (both sides of the book nonempty)
1  12

Probability that the book is nonempty on both sides
16.36%

Buy Sell Total

P1 P2 P3 P4 P1 P2 P3 P4

Average conditional execution probabilities of limit orders
0.0000 0.3256 0.8225 0.9398 0.9398 0.8225 0.3256 0.0000

Percentages of submitted orders
0.00% 28.81% 21.19% 0.00% 0.00% 21.19% 28.81% 0.00% 100.00%

Limit buy orders: 31.33% Limit sell orders: 31.33%
Market buy orders: 18.67% Market sell orders: 18.67%
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optimal for some traders with extreme private values in an increasing number of states as it was  the
case above when M = 2. However, there is one important difference. Since limit orders last for M = 3
periods, conditional execution probabilities of limit orders submitted at various prices are higher (or
not lower) in many states compared to the earlier setting where limit orders last for only M = 2 periods.
Thus, the incentives of traders with more extreme private values to submit more aggressive orders
still increases with the dispersion in private values, albeit at a slower rate compared to the case with
M = 2. This difference renders the limit order book more liquid and causes the average bid–ask spreads
to be lower relative to the case with M = 2.

In the equilibrium of the limit order book shown in Table 4 with M = 3 and w = 4, we  find that
215 states are visited with positive probability, and in 70 of these states, both sides of the book are
nonempty with a probability of 0.0955. The average conditional bid–ask spread is equal to 1.0699. In
untabulated specifications with M = 3, we find that if w = 2 (w = 3), the average conditional bid–ask
spread is equal to 1 (1.0019), and the probability that both sides of the book are nonempty is equal to
0.1010 (0.0876).34 Thus, our results show that average equilibrium bid–ask spreads in specifications
with M = 3 are lower than those in corresponding specifications with M = 2. Similarly, for any value of
the dispersion parameter w, the equilibrium probability of both sides of the book being nonempty is
higher when M = 3 than when M = 2. These findings suggest that a limit order market becomes more liq-
uid when limit orders have longer times until expiration. Further, we also observe in Tables 3 and 4 that
when M = 3, the equilibrium probability of visiting the empty limit order book (state ω1) is considerably
lower than the same probability when M = 2 in Tables 1 and 2 respectively.

If we look at the equilibrium probabilities and frequency rankings of certain states in Table 4 and
compare them to the corresponding ones in Table 2, we  can better understand why average conditional
bid–ask spreads in specifications with M = 3 are lower than those in specifications with M = 2. In Table 4,
we notice that the equilibrium probability of both states ω5 = {0, 0, 0, + 1} and ω6 = { −1, 0, 0, 0} is 0.0058
each when w = 4 and M = 3, whereas Table 2 reports that the same states are visited with probability
0.0395 when w = 4 and M = 2. Similarly, states ω2 = { +1, 0, 0, 0} and ω9 = {0, 0, 0, − 1} are both visited
with zero probability in the equilibrium shown in Table 4, whereas they are visited with a positive
probability (0.008 each) in the equilibrium shown in Table 2.35 This comparison shows that when
limit orders last for three periods, the incentives of traders with extreme private values to submit
more aggressive orders in equilibrium (as the dispersion of private values increases) increases at a
slower rate compared to the earlier case when limit orders last for two  periods. As the conditional
execution probabilities of limit orders submitted at p2 or p3 are increasing with the time to expiration
M (see the section “Average conditional execution probabilities of limit orders” in Tables 2 and 4),
traders with extreme private values behave more patiently in equilibrium when M is higher (see also
the section “Percentages of submitted orders” in Tables 2 and 4). Similarly, in the equilibrium shown
in Table 4, traders with moderate private values are not as eager in placing conservative limit orders
at the corners of the price grid as they are in the equilibrium shown in Table 2.

5.3. Limit orders vs. market orders

As we discussed in Lemma  1 and Proposition 1, our theoretical model restricts traders’ optimal
order submission strategies to be a monotone function of their private valuations. This monotonicity
property, which was first explored by Sandås (2001) and Hollifield et al. (2004), implies that agents
with more extreme private values will be more likely to submit market orders and those with moderate
private values will be more likely to submit limit orders. This feature does also hold in our model,
and the optimal order placement strategies outlined in Proposition 2 (see Eqs. (11)–(14)) specify
that traders with extremely high private values submit market buy orders, d∗b

L (st) = 1 if and only if

34 For w ≥ 5, we again find that the average bid–ask spread monotonically increases with the dispersion parameter w. If
w  = 5 (w = 6), the probability-weighted average bid–ask spread is 1.1857 (1.4147), the number of states visited with positive
probability in equilibrium is 259 (263), and the probability that both sides of the book being nonempty is equal to 0.0893
(0.0856).

35 If M = 3 and w = 5, states ω2 and ω9 are visited with positive probability (0.0044 each). In this case, states ω5 and ω6 are the
fourth and fifth most often visited states with an equilibrium probability of 0.0308 each.
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Table 4
Probability distribution of private valuation: uniform (26,37) with w = 4.

Price  grid:  P  =  {30,  31,  32,  33};  maximum  life  span  of  a  limit  order:  M  =  3

Rank  Code  Prob.  P1 P2 P3 P4 Prob.  market  buy  Prob.  market  sell

Most  frequently  visited  states  in  equilibrium
1 ω1 0.1864  0 0 0 0
2 ω3 0.0669  0  +1  0  0  0.2707
3 ω8 0.0669  0 0 −1  0 0.2707
4 ω4 0.0479  0 0 +1  0  0.5072
5 ω7 0.0479  0 −1 0 0 0.5072
6 ω97 0.0274  0 −1 −2  0 0.5072
7  ω115 0.0274  0  +2  +1  0  0.5072
8 ω19 0.0273  0 +3 0 0 0.3532
9 ω24 0.0273  0  0  −3  0  0.3532
10 ω11 0.0234  0 +2 0 0 0.3035
11 ω16 0.0234  0 0 −2  0  0.3035
12 ω67 0.0184  0  +1  −2  0  0.3603  0.4130
13  ω121 0.0184  0  +2  −1  0  0.4130  0.3603
14  ω20 0.0173  0  0  +3  0  0.5141
15  ω23 0.0173  0  −3  0  0  0.5141
16 ω94 0.0155  −1  −2  0  0  0.5993
17 ω117 0.0155  0  0  +2  +1  0.5993
18  ω103 0.0086  0  −1  −3  0  0.5662
19  ω169 0.0086  0  +3  +1  0  0.5662
20 ω12 0.0086  0 0 +2 0 0.5233
21 ω15 0.0086  0  −2  0  0  0.5233
22  ω298 0.0085  −1  −2  −3  0  0.5993
23  ω353 0.0085  0  +3  +2  +1  0.5993
24  ω13 0.0078  0  0  0  +2  0.5915
25 ω14 0.0078  −2  0  0  0  0.5915
26  ω61 0.0069  0  +1  +2  0  0.5188
27  ω151 0.0069  0  −2  −1  0  0.5188
28  ω195 0.0066  0  0  +3  (+1,+2)  0.6150
29 ω232 0.0066  (− 1,  − 2) −3 0 0 0.6150
30 ω27 0.0061  0  (+1,+2)  0  0  0.2168
31  ω32 0.0061  0  0  (−  1,  −  2)  0  0.2168
32  ω5 0.0058  0  0  0  +1  0.5993
33  ω6 0.0058  −1  0  0  0  0.5993

Least  frequently  visited  states  in  equilibrium  (bottom  6)
210  ω284 0.000007  +1  0  −2  −3  0.3035  0.0000
211  ω355 0.000007  +3  +2  0  −1  0.0000  0.3035
212 ω146 0.000005  0  +2  0  (−  1,  −  3)  0.0000  0.3035
213  ω245 0.000005  (+1,+3)  0  −2  0  0.3035  0.0000
214  ω300 0.000001  −1  0  −2  −3  0.5993
215  ω351 0.000001  +3  +2  0  +1  0.5993

Conditional  averages
0.3775  0.3775

Average  bid–ask  spread  Number  of  hit  states  (both  sides  of  the  book  nonempty)
1.0699  70

Probability  that  the  book  is  nonempty  on  both  sides
9.55%

Buy Sell Total

P1 P2 P3 P4 P1 P2 P3 P4

Average conditional execution probabilities of limit orders
0.1233 0.3994 0.6337 0.8780 0.8780 0.6337 0.3994 0.1233
Percentages of submitted orders
5.82% 20.62% 17.47% 6.10% 6.10% 17.47% 20.62% 5.82% 100.00%

Limit buy orders: 30.53% Limit sell orders: 30.53%
Market buy orders: 19.47% Market sell orders: 19.47%
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u ∈ (�b
L (st), B], in any state st, where the ask side is nonempty, i.e., pL = a(st). Symmetrically, traders

with extremely low private values submit market sell orders, d∗s
K (st) = 1 if and only if u ∈ [A, �s

K (st)],
in any state st, where the bid side is nonempty, i.e., pK = b(st).

To determine the percentage of market order submissions on each side of the book (buy or sell)
in the equilibrium of our model, we calculate the probability of a market order submission (for buy
and sell sides separately) in each state, and then calculate a weighted average of these probabilities
across all states (where the weight for each state is the equilibrium probability of that state) for buy
and sell sides respectively (see under the section “Percentages of submitted orders” in Tables 1–4). In
other words, we calculate the unconditional probability of observing a market order on each side of the
book. In the limit order market equilibria shown in Tables 1–4,  we find that as the dispersion in traders’
private valuations increases (as w increases for any given level of M),  the equilibrium percentage of
market order submissions increases (from 34.90% in Table 1 to 35.70% in Table 2 and from 37.34% in
Table 3 to 38.94% in Table 4) as well, since traders with extreme private values tend to follow more
aggressive order placement strategies and demand more liquidity in equilibrium.36

Further, in our model specifications in Tables 1–4,  given the probability of a market buy and/or
a market sell order submission in each state, we compute equally weighted conditional averages of
market buy and market sell order submission probabilities (averaged across all states where the ask
(bid) side is nonempty), and report them for the buy and sell sides respectively. For each level of M,  one
can note that the conditional averages of market buy and market sell order probabilities also increase
with the dispersion (w) in traders’ private valuations. For example, in the equilibrium with M = 2 and
w = 1 (M = 3 and w = 1), conditional on the ask side of the limit order book being nonempty, the
average probability of observing a market buy order submission is 0.3851 (0.3726). In the equilibrium
with M = 2 and w = 4 (M = 3 and w = 4), conditional on the ask side of the limit order book being
nonempty, the average probability of observing a market buy order submission is 0.4026 (0.3775).

6. Empirical implications

Our model has a number of new empirical implications about the dynamic evolution of the limit
order book, the bid–ask spreads, the effect of the price and time priority rule on the optimal placement
of limit orders, and the decomposition of order flow between market orders and limit orders.

The main empirical prediction of our paper follows from our comparative dynamics result that
bid–ask spreads in a limit order market are increasing in the dispersion in private values across traders.
When the dispersion of agents’ private values is small, our model predicts that submitting limit buy or
sell orders at price quotes far from the middle point of the limit order book is less profitable. Since, in
this case, agents (on both sides of the book) are more patient, their demand for liquidity is lower, i.e.,
their tendency to submit more aggressive limit orders and market orders is not strong. Dynamically,
this implies that the future execution probabilities of more conservative limit orders submitted (on
the other side of the book) in the current time period are lower. Hence, the expected returns to placing
buy (sell) limit orders that are far below (above) an investor’s own private valuation are lower even
though potential gains from limit orders conditional on execution are high. On the other hand, as the
dispersion in agents’ private values increases, the number of impatient traders with a higher liquidity
demand increases, which makes it more profitable for other traders to place limit orders that are more
conservative with larger potential profits since the execution probability of these orders increases with
the presence of more aggressive traders demanding liquidity. Thus, under market conditions with a
large dispersion in liquidity traders’ private values, the expected returns to placing buy (sell) limit
orders that are far below (above) an investor’s own private valuation are also higher in equilibrium.
Hence, a wider distribution of private values leads to more order placement at prices away from the
consensus value, and therefore, to a larger bid–ask spread. However, since private values of traders
are not directly observable, empirical proxies for the dispersion in traders’ private values are needed
to test this prediction. Two proxies for the dispersion in private values may  be the share turnover and

36 Note that since the empty limit order book, state ω1, is less frequently observed in equilibrium when M = 3 than when M = 2,
the  unconditional probability of observing market order submissions is higher when M = 3.
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the abnormal trading volume (see Harris and Raviv, 1993) or the conditional volatilities of these two
measures.37

According to the equilibrium results that we  obtain from numerical solutions to our model, we
also predict that the equilibrium order flow depends on the current state of the limit order book in
the sense that an agent’s optimal trading strategy is largely affected by the time and price priorities
of the existing limit orders in the book. Therefore, order undercutting is a prediction that comes out
endogenously from our model. Next, our model predicts that for a given level of dispersion in agents’
private valuations, the average bid–ask spread will be smaller if limit orders have longer life spans.
Finally, our model predicts that the percentage of market orders in the equilibrium order flow is also
increasing with the dispersion in agents’ private valuations.

7. Conclusion

In this paper, we developed a dynamic model of a limit order market populated with liquidity
traders who have only private values. We  characterized and analyzed the equilibrium order placement
strategies of traders and the conditional execution probabilities of limit orders as a function of traders’
liquidity demand and the state of the limit order book. We solved for the equilibrium of the model
numerically, and analyzed its properties by performing comparative dynamics analysis. Our analysis
showed that changes in the steady state of the limit order book and optimal order placement strategies
reflect corresponding changes in the trade-off between order execution risk and the size of potential
trading gains. We  demonstrated how changes in the dispersion of traders’ private values affect agents’
optimal trading strategies and conditional execution probabilities of limit orders. Our main result is
that the dispersion in private values across traders has a significant impact on the stationary state of
the equilibrium limit order book and the average bid–ask spread. In our numerical experiments, we
showed that when the dispersion of agents’ private valuations of the asset is small, submitting limit
buy or sell orders at price quotes far from the middle point of the limit order book is less profitable.
On the other hand, as the dispersion in agents’ private values for the asset increases, the number of
impatient traders with a higher liquidity demand increases. This in turn makes it more profitable for
liquidity traders with moderate private values to place more conservative limit orders with larger
potential profits, since these orders are more likely to be executed due to the increased presence of
more aggressive traders demanding liquidity. Thus, a wider distribution of private values leads to more
order placement at prices away from the consensus value, and therefore, to a larger bid–ask spread.
Further, our numerical simulations showed that extending the life span of limit orders reduces the
average bid–ask spread observed in equilibrium. Finally, we  found that the equilibrium percentage of
market order submissions is also increasing in the dispersion in liquidity traders’ private values.
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