Chapter Six: Transportation, Transshipment, and Assignment Problems

PROBLEM SUMMARY

1. Balanced transportation
2. Balanced transportation
3. Balanced transportation
4. Unbalanced transportation
5. Unbalanced transportation
6. Unbalanced transportation
7. Unbalanced transportation, multiple optimal
8. Sensitivity analysis (6-7)
9. Unbalanced transportation, multiple optimal
10. Unbalanced transportation
11. Unbalanced transportation
12. Balanced transportation
13. Balanced transportation
14. Sensitivity analysis (6-13)
15. Unbalanced transportation, multiple optimal
16. Sensitivity analysis (6-15)
17. Shortage costs (6-15)
18. Unbalanced transportation
19. Unbalanced transportation, multiple optimal
20. Balanced transportation
21. Unbalanced transportation, multiple optimal
22. Sensitivity analysis (6-21)
23. Unbalanced transportation
24. Sensitivity analysis (6-23)
25. Sensitivity analysis (6-23)
26. Unbalanced transportation
27. Unbalanced transportation
28. Unbalanced transportation
29. Unbalanced transportation, production scheduling
30. Unbalanced transportation
31. Sensitivity analysis (6-30)
32. Shortage costs
33. Multiperiod scheduling
34. Balanced transportation
35. Transshipment
36. Transshipment
37. Transshipment
38. Transshipment
39. Transshipment
40. Unbalanced assignment, LP formulation
41. Assignment
42. Assignment
43. Assignment
44. Unbalanced assignment, multiple optimal
45. Assignment, multiple optimal
46. Assignment
47. Unbalanced assignment, multiple optimal
48. Assignment or transportation
49. Prohibited routes (6-48)
50. Unbalanced assignment
51. Unbalanced assignment, multiple optimal
52. Unbalanced assignment
53. Unbalanced assignment (maximization)
54. Unbalanced assignment
55. Assignment
56. Unbalanced assignment

PROBLEM SOLUTIONS

1. St. Louis - Chicago $=250$

Richmond - Chicago $=50$
Richmond - Atalnta $=350$
2. $x_{13}=2$
$x_{14}=10$
$x_{22}=9$
$x_{23}=8$
$x_{31}=10$
$x_{32}=1$
3. $x_{\mathrm{A} 3}=100$
$x_{\mathrm{B} 1}=135$
$x_{\mathrm{B} 2}=45$
$x_{\mathrm{C} 2}=130$
$x_{\mathrm{C} 3}=70$
$Z=\$ 2,345$
4. Minimize $Z=6 x_{\mathrm{A} 1}+9 x_{\mathrm{A} 2}+100 x_{\mathrm{A} 3}+12 x_{\mathrm{B} 1}$

$$
\begin{aligned}
& +3 x_{\mathrm{B} 2}+5 x_{\mathrm{B} 3}+4 x_{\mathrm{C} 1}+8 x_{\mathrm{C} 2} \\
& +11 x_{\mathrm{C} 3}
\end{aligned}
$$

subject to

$$
\begin{aligned}
x_{\mathrm{A} 1}+x_{\mathrm{A} 2}+x_{\mathrm{A} 3} & \leq 130 \\
x_{\mathrm{B} 1}+x_{\mathrm{B} 2}+x_{\mathrm{B} 3} & \leq 70 \\
x_{\mathrm{C} 1}+x_{\mathrm{C} 2}+x_{\mathrm{C} 3} & \leq 100 \\
x_{\mathrm{A} 1}+x_{\mathrm{B} 1}+x_{\mathrm{C} 1} & =80 \\
x_{\mathrm{A} 2}+x_{\mathrm{B} 2}+x_{\mathrm{C} 2} & =110 \\
x_{\mathrm{A} 3}+x_{\mathrm{B} 3}+x_{\mathrm{C} 3} & =60 \\
x_{i j} & \geq 0
\end{aligned}
$$

$x_{\mathrm{A} 2}=80$
$x_{\mathrm{B} 2}=10$
$x_{\mathrm{B} 3}=60$
$x_{\mathrm{C} 1}=80$
$x_{\mathrm{C} 2}=20$
$Z=\$ 1,530$
5. $x_{11}=70$
$x_{13}=20$
$x_{22}=10$
$x_{23}=20$
$x_{32}=100$
$Z=\$ 1,240$
6. $x_{\mathrm{A} 2}=20$
$x_{\mathrm{A} 3}=60$
$x_{\mathrm{B} 2}=70$
$x_{\mathrm{C} 1}=80$
$x_{\mathrm{C} 2}=20$
$Z=\$ 1,290$
7. Minimize $Z=14 x_{\mathrm{A} 1}+9 x_{\mathrm{A} 2}+16 x_{\mathrm{A} 3}+18 x_{\mathrm{A} 4}$

$$
+11 x_{\mathrm{B} 1}+8 x_{\mathrm{B} 2}+M x_{\mathrm{B} 3}+16 x_{\mathrm{B} 4}
$$

$$
+16 x_{\mathrm{C} 1}+12 x_{\mathrm{C} 2}+10 x_{\mathrm{C} 3}+22 x_{\mathrm{C} 4}
$$

subject to

$$
\begin{aligned}
x_{\mathrm{A} 1}+x_{\mathrm{A} 2}+x_{\mathrm{A} 3}+x_{\mathrm{A} 4} & \leq 150 \\
x_{\mathrm{B} 1}+x_{\mathrm{B} 2}+x_{\mathrm{B} 3}+x_{\mathrm{B} 4} & \leq 210 \\
x_{\mathrm{C} 1}+x_{\mathrm{C} 2}+x_{\mathrm{C} 3}+x_{\mathrm{C} 4} & \leq 320 \\
x_{\mathrm{A} 1}+x_{\mathrm{B} 1}+x_{\mathrm{C} 1} & =130 \\
x_{\mathrm{A} 2}+x_{\mathrm{B} 2}+x_{\mathrm{C} 2} & =70 \\
x_{\mathrm{A} 3}+x_{\mathrm{B} 3}+x_{\mathrm{C} 3} & =180 \\
x_{\mathrm{A} 4}+x_{\mathrm{B} 4}+x_{\mathrm{C} 4} & =240 \\
x_{i j} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{\mathrm{A} 2}=70 \\
& x_{\mathrm{A} 4}=80 \\
& x_{\mathrm{B} 1}=50 \\
& x_{\mathrm{B} 4}=160 \\
& x_{\mathrm{C} 1}=80 \\
& x_{\mathrm{C} 3}=180 \\
& Z=\$ 8,260
\end{aligned}
$$

8. There is no effect. The Gary mill has 60 tons left over as surplus with the current solution to Problem 11. Reducing the capacity at Gary to 30 still leaves a surplus of 30 tons.
9. Minimize $Z=100 x_{\mathrm{A} 1}+10 x_{\mathrm{A} 2}+5 x_{\mathrm{A} 3}+12 x_{\mathrm{B} 1}$

$$
\begin{aligned}
& +9 x_{\mathrm{B} 2}+4 x_{\mathrm{B} 3}+7 x_{\mathrm{C} 1}+3 x_{\mathrm{C} 2} \\
& +11 x_{\mathrm{C} 3}+9 x_{\mathrm{D} 1}+5 x_{\mathrm{D} 2}+7 x_{\mathrm{D} 3}
\end{aligned}
$$

subject to

$$
\begin{aligned}
x_{\mathrm{A} 1}+x_{\mathrm{A} 2}+x_{\mathrm{A} 3} & =90 \\
x_{\mathrm{B} 1}+x_{\mathrm{B} 2}+x_{\mathrm{B} 3} & =50 \\
x_{\mathrm{C} 1}+x_{\mathrm{C} 2}+x_{\mathrm{C} 3} & =80 \\
x_{\mathrm{D} 1}+x_{\mathrm{D} 2}+x_{\mathrm{D} 3} & =60 \\
x_{\mathrm{A} 1}+x_{\mathrm{B} 1}+x_{\mathrm{C} 1}+x_{\mathrm{D} 1} & \leq 120 \\
x_{\mathrm{A} 2}+x_{\mathrm{B} 2}+x_{\mathrm{C} 2}+x_{\mathrm{D} 2} & \leq 100 \\
x_{\mathrm{A} 3}+x_{\mathrm{B} 3}+x_{\mathrm{C} 3}+x_{\mathrm{D} 2} & \leq 110 \\
x_{i j} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{\mathrm{A} 1}=90 \\
& x_{\mathrm{B} 1}=30 \\
& x_{\mathrm{B} 3}=20 \\
& x_{\mathrm{C} 2}=80 \\
& x_{\mathrm{D} 1}=40 \\
& x_{\mathrm{D} 2}=20 \\
& Z=\$ 1,590
\end{aligned}
$$

10. Minimize $Z=9 x_{T N}+14 x_{\mathrm{TP}}+12 x_{\mathrm{TC}}+17 x_{\mathrm{TB}}$

$$
\begin{aligned}
& +11 x_{\mathrm{MN}}+10 x_{\mathrm{MP}}+100 x_{\mathrm{MC}}+10 x_{\mathrm{MB}} \\
& +12 x_{\mathrm{FN}}+8 x_{\mathrm{FP}}+15 x_{\mathrm{FC}}+7 x_{\mathrm{FB}}
\end{aligned}
$$

subject to

$$
\begin{aligned}
x_{\mathrm{TN}}+x_{\mathrm{TP}}+x_{\mathrm{TC}}+x_{\mathrm{TB}} & \leq 200 \\
x_{\mathrm{MN}}+x_{\mathrm{MP}}+x_{\mathrm{MC}}+x_{\mathrm{MB}} & \leq 200 \\
x_{\mathrm{FN}}+x_{\mathrm{FP}}+x_{\mathrm{FC}}+x_{\mathrm{FB}} & \leq 200 \\
x_{\mathrm{TN}}+x_{\mathrm{MN}}+x_{\mathrm{FN}} & =130 \\
x_{\mathrm{TP}}+x_{\mathrm{MP}}+x_{\mathrm{FP}} & =170 \\
x_{\mathrm{TC}}+x_{\mathrm{MC}}+x_{\mathrm{FC}} & =100 \\
x_{\mathrm{TB}}+x_{\mathrm{MB}}+x_{\mathrm{FB}} & =150 \\
x_{i j} & \geq 0
\end{aligned}
$$

Tampa - NY = 100
Tampa - Chicago $=100$
Miami - NY = 30
Miami - Philadelphia $=120$
Fresno - Philadelphia $=50$
Fresno - Boston $=50$
$Z=\$ 5,080$
11. Minimize $Z=7 x_{1 \mathrm{~A}}+8 x_{1 \mathrm{~B}}+5 x_{1 \mathrm{C}}+6 x_{2 \mathrm{~A}}+100 x_{2 \mathrm{~B}}$ $+6 x_{3 \mathrm{C}}+10 x_{3 \mathrm{~A}}+4 x_{3 \mathrm{~B}}+5 x_{3 \mathrm{C}}$
$+3 x_{4 \mathrm{~A}}+9 x_{4 \mathrm{~B}}+100 x_{4 \mathrm{C}}$
subject to

$$
\begin{aligned}
x_{1 \mathrm{~A}}+x_{1 \mathrm{~B}}+x_{1 \mathrm{C}} & \leq 5 \\
x_{2 \mathrm{~A}}+x_{2 \mathrm{~B}}+x_{2 \mathrm{C}} & \leq 25 \\
x_{3 \mathrm{~A}}+x_{3 \mathrm{~B}}+x_{3 \mathrm{C}} & \leq 20 \\
x_{4 \mathrm{~A}}+x_{4 \mathrm{~B}}+x_{4 \mathrm{C}} & \leq 25 \\
x_{1 \mathrm{~A}}+x_{2 \mathrm{~A}}+x_{3 \mathrm{~A}}+x_{4 \mathrm{~A}} & =10 \\
x_{1 \mathrm{~B}}+x_{2 \mathrm{~B}}+x_{3 \mathrm{~B}}+x_{4 \mathrm{~B}} & =20 \\
x_{1 \mathrm{C}}+x_{2 \mathrm{C}}+x_{3 \mathrm{C}}+x_{4 \mathrm{C}} & =15 \\
x_{i j} & \geq 0
\end{aligned}
$$

$$
x_{1 \mathrm{C}}=5
$$

$$
x_{2 \mathrm{C}}=10
$$

$$
x_{3 \mathrm{~B}}=20
$$

$$
x_{4 \mathrm{~A}}=10
$$

$$
Z=\$ 195
$$

12. $x_{1 \mathrm{~A}}=70$

$$
x_{2 \mathrm{~B}}=20
$$

$$
x_{2 \mathrm{C}}=10
$$

$$
x_{3 \mathrm{~A}}=20
$$

$$
x_{3 \mathrm{~B}}=100
$$

$$
x_{3 \mathrm{D}}=100
$$

$$
Z=\$ 13,200
$$

13. $x_{\mathrm{A} 2}=1,800$
$x_{\text {A } 4}=950$
$x_{\mathrm{A} 6}=750$
$x_{\mathrm{B} 1}=1,600$
$x_{\mathrm{B} 3}=1,500$
$x_{\mathrm{B} 5}=1,250$
$x_{\mathrm{B} 6}=650$
$Z=\$ 3,292.50$
14. No effect
15. $x_{1 \mathrm{~B}}=250$
$x_{1 \mathrm{D}}=170$
$x_{2 \mathrm{~A}}=520$
$x_{2 \mathrm{C}}=90$
$x_{3 \mathrm{C}}=130$
$x_{3 \mathrm{D}}=210$
$Z=\$ 21,930$

$$
\text { 16.(1) } \begin{array}{ll}
x_{1 \mathrm{~B}}=250 & x_{1 \mathrm{~B}}=250 \\
x_{1 \mathrm{D}}=350 & x_{1 \mathrm{D}}=50 \\
x_{2 \mathrm{~A}}=520 & x_{2 \mathrm{~A}}=520 \\
x_{2 \mathrm{C}}=90 & x_{2 \mathrm{C}}=90 \\
x_{3 \mathrm{C}}=310 & x_{3 \mathrm{C}}=310 \\
x_{3 \mathrm{D}}=30 & x_{3 \mathrm{D}}=30 \\
& x_{4 \mathrm{D}}=300 \\
Z=\$ 29,130 & Z=\$ 24,930
\end{array}
$$

Select alternative 2; add a warehouse at Charlotte
17. $x_{1 \mathrm{~B}}=250$
$x_{1 \mathrm{D}}=170$
$x_{2 \mathrm{~A}}=520$
$x_{2 \mathrm{C}}=90$
$x_{3 \mathrm{C}}=130$
$x_{3 \mathrm{D}}=210$
$x_{4 \mathrm{C}}=180$
$Z=\$ 26,430$
Total transportation cost $=\$ 21,930$
Total shortage cost $=\$ 4,500$
18. $\mathrm{GA}-1$ to $\mathrm{NC}-\mathrm{W}=2$

SC-1 to VA $-\mathrm{T}=7$
GA - 1 to $\mathrm{VA}-\mathrm{SW}=10$
FL- 1 to $\mathrm{NC}-\mathrm{E}=2$
GA -2 to $\mathrm{NC}-\mathrm{SW}=6$
FL- 1 to $\mathrm{NC}-\mathrm{W}=6$
GA -2 to VA $-\mathrm{C}=4 \quad \mathrm{FL}-2$ to VA $-\mathrm{C}=5$
SC -1 to $\mathrm{NC}-\mathrm{SW}=1 \quad Z=\$ 841,000$
$S C-1$ to $N C-P=6$
19. $x_{1 \mathrm{~B}}=60$
$x_{2 A}=45$
$x_{2 \mathrm{~B}}=25$
$x_{2 \mathrm{C}}=35$
$x_{3 \mathrm{~B}}=5$
$Z=\$ 1,605$
20.
$x_{11}=30$
$x_{54}=10$
$x_{12}=5 \quad x_{55}=30$
$x_{14}=2 \quad x_{63}=6$
$x_{22}=20 \quad x_{64}=2$
$x_{33}=14 \quad x_{66}=20$
$x_{44}=26$
$Z=364$ miles
21. North $\mathrm{A}=250$

South B = 200
South $\mathrm{C}=40$
East $\mathrm{A}=150$
East $\mathrm{C}=160$
West $\mathrm{D}=210$
Central B $=100$
Central D $=190$
$Z=20,700 \mathrm{~min}$.
22. North $A=250$

South B $=200$
South $C=140$
East $\mathrm{A}=100$
East $C=210$
West $\mathrm{D}=210$
Central $\mathrm{B}=150$
Central D $=140$
$Z=21,200 \mathrm{~min}$.
The overall travel time increased by 500 minutes, which divided by all 1,400 students is only an increase of .357 minutes per student. This does not seem to be a significantly large increase.
23. $A-3=8$

A- $4=18$
B $-3=12$
B $-5=27$
D $-3=5$
D $-6=35$
E- $1=25$
$\mathrm{E}-2=15$
E-3=4
$Z=\$ 1,528$ (multiple optimal)
24. If Easy Time purchased all the baby food demanded at each store from the distributor total profit would be $\$ 1,246$, which is less than buying it from the other locations as determined in problem 123. This profit is computed by multiplying the profit at each store by the demand. In order to determine if some of the demand should be met by the distributor a new source (F) must be added to problem 23. This source represents the distributor and has an available supply of 150 cases, the total demand from all the stores. The new optimal solution is shown as follows.

A-3 $=8$
A- $4=18$
B $-3=12$
B $-5=27$
D $-3=5$
D- $6=35$
E-1 $=25$
E-2 $=15$
$\mathrm{E}-3=5$
$Z=\$ 1,528$
25. Solve the model as a linear programming model to obtain the shadow prices. Among the 5 purchase locations, the store at Albany has
the highest shadow price of $\$ 3$. The sensitivity range for supply at Albany is $25 \leq q_{1} \leq 43$.
Thus, as much as 17 additional cases can be purchased from Albany which would increase profit by $\$ 51$ for a total of $\$ 1,579$.
26. Charlotte - Atlanta $=30$

Memphis - St. Louis $=30$
Louisville - NY = 30
$Z=159,000$
27. $1-\mathrm{C}=2$
$1-\mathrm{E}=5$
$2-\mathrm{C}=10$
$3-E=5$
$4-\mathrm{D}=8$
$5-\mathrm{A}=9$
$6-B=6$
$Z=1,275$
28. Jan - Jan $=180$

Jan - May $=30$
Feb $-\mathrm{Feb}=260$
Feb - March $=40$
March - March $=300$
April - April $=210$
April - May $=90$
May - May $=280$
May - June $=20$
June - June = 300
$Z=\$ 180,645$
29. $\mathrm{R}_{\mathrm{J}}-\mathrm{Jan}=300$
$\mathrm{O}_{\mathrm{J}}-\mathrm{Jan}=110$
$\mathrm{R}_{\mathrm{F}}-\mathrm{Feb}=300$
$\mathrm{O}_{\mathrm{F}}-\mathrm{Feb}=20$
$\mathrm{O}_{\mathrm{F}}-$ March $=120$
$\mathrm{R}_{\mathrm{M}}-$ March $=180$
$\mathrm{R}_{\mathrm{M}}-$ April $=120$
$\mathrm{O}_{\mathrm{M}}-$ March $=200$
$\mathrm{R}_{\mathrm{A}}-$ April $=300$
$\mathrm{O}_{\mathrm{A}}-$ April $=200$
$\mathrm{R}_{\mathrm{M}}-$ May $=300$
$\mathrm{O}_{\mathrm{M}}-\mathrm{May}=130$
$\mathrm{R}_{\mathrm{J}}-$ June $=300$
$\mathrm{O}_{\mathrm{J}}-$ June $=80$
$Z=\$ 301,004$
30. Sacramento - St. Paul $=13$

Sacramento - Topeka $=5$
Bakersfield - Denver $=8$
Bakersfield - St. Paul $=2$
San Antonio - Topeka $=10$
Montgomery - Denver $=12$
Jacksonville - Akron = 15
Jacksonville - Topeka $=5$
Ocala - Louisville $=15$
$Z=\$ 278,000$
It is cheaper for National Foods to continue to operate its own trucking firm.
31. Increasing the supply at Sacramento, Jacksonville and Ocala to 25 tons would have little effect, reducing the overall monthly shipping cost to $\$ 276,000$, which is still higher than the $\$ 245,000$ the company is currently spending with its own trucks.

Alternatively, increasing the supply at San Antonio and Montgomery to 25 tons per month reduces the monthly shipping cost to $\$ 242,500$ which is less than the company's cost with their own trucks.
32. L.A. - Singapore $=150$
L.A. - Taipei $=300$

Savannah - Hong Kong $=400$
Savannah - Taipei $=200$
Galveston - Singapore $=350$
Order shortage in Hong Kong $=200$
$Z=\$ 723,500$
Penalty cost $=\$ 160,000$
33.

Period of Use		Period of Production				Capacity
		1	2	3	4	
1	Beginning Inventory Regular Overtime Subcontract	$\begin{array}{r} 300 \\ 8,700 \end{array}$	$\begin{array}{r} 300 \\ 1,000 \end{array}$			$\begin{array}{r} 300 \\ 9,000 \\ 1,000 \\ 3,000 \end{array}$
2	Regular Overtime Subcontract		$\begin{array}{r} 10,000 \\ 700 \end{array}$	$\begin{aligned} & 800 \\ & 200 \end{aligned}$		$\begin{array}{r} 10,000 \\ 1,500 \\ 3,000 \end{array}$
3	Regular Overtime Subcontract			$\begin{array}{r} 12,000 \\ 2,000 \\ 1,000 \\ \hline \end{array}$	2,000	$\begin{array}{r} 12,000 \\ 2,000 \\ 3,000 \end{array}$
4	Regular Overtime Subcontract				$\begin{array}{r} 12,000 \\ 2,000 \\ 3,000 \end{array}$	$\begin{array}{r} 12,000 \\ 2,000 \\ 3,000 \end{array}$
	Demand	9,000	12,000	16,000	19,000	

[^0]34. Al - Eagles (2) and Bengals (5)

Barbara - Saints (5) and Jets (1)
Carol - Cowboys (1) and Packers (2)
Dave - Redskins (1) and Cardinals (7)
$Z=24$
Multiple optimal solutions exist
Carol seems to have received the best allocation but overall the allocation seems relatively fair.
35. $x_{14}($ Hamburg - Norfolk) $=42$
$x_{59}($ NY - Chicago $)=50$
$x_{26}($ Marseilles - Savannah $)=63$
$x_{35}($ Liverpool - NY $)=37$
$x_{48}($ Norfolk - St. Louis $)=42$
$x_{15}($ Hamburg - NY) $=13$
$x_{67}($ Savannah - Dallas $)=60$
$x_{68}($ Savannah - St. Louis $)=3$

$$
\begin{array}{ll}
Z=\$ 77,362 & \mathrm{HND}=38 \\
& \mathrm{HNS}=17 \\
& \mathrm{MSD}=22
\end{array}
$$

European Ports
U.S. Warehouses
Distribution Centers

36. $\quad x_{16}$ (Mexico - Houston $)=18$
$x_{24}($ Puerto Rico - Miami $)=11$
$x_{34}($ Haiti - Miami $)=23$
$x_{47}($ Miami - NY $)=20$
$x_{48}($ Miami - St. Louis $)=12$
$x_{49}($ Miami - LA $)=2$
$x_{69}($ Houston - LA $)=18$
$Z=\$ 479$ or $\$ 479,000$
37.(a)

$x_{15}=72$	$x_{46}=25$
$x_{24}=105$	$x_{47}=80$
$x_{35}=83$	$x_{56}=65$
	$x_{58}=90$

$Z=\$ 4,871,000$
Distribution
Farms Plants Centers

(b) Adding a capacity constraint at plants in Indiana and Georgia

$x_{14}=15$	$x_{46}=40$
$x_{15}=57$	$x_{47}=80$
$x_{24}=105$	$x_{56}=50$
$x_{35}=83$	$x_{58}=90$

$Z=\$ 4,886,000$
38. $x_{1 \mathrm{C}}=15$

$$
x_{\mathrm{BA}}=40
$$

$$
x_{2 \mathrm{~B}}=57
$$

$$
x_{\mathrm{CB}}=80
$$

$$
Z=1,490 \text { or } \$ 14,900
$$

70

39. $\quad x_{37}($ Italy - Texas $)=2.1$
$x_{15}($ Germany - Mexico $)=5.2$
$x_{26}($ Belgium - Panama $)=6.3$
$x_{59}($ Mexico - Ohio $)=5.2$
x_{68} (Panama - Virginia) $=3.7$
$x_{69}($ Panama - Ohio $)=2.6$
$Z=\$ 27.12$ million
40. $1-1$

2-4
3-2
5-3
$Z=78$
41. $1-\mathrm{C}$

2-A
3-B
4-D
$Z=37 \mathrm{~min}$.
42.(a) 1 - B

2 - D
3-C
4-A
$Z=\$ 32$
(b) Minimize $Z=12 x_{1 \mathrm{~A}}+11 x_{1 \mathrm{~B}}+8 x_{1 \mathrm{C}}+14 x_{1 \mathrm{D}}$

$$
\begin{aligned}
& +10 x_{2 \mathrm{~A}}+9 x_{2 \mathrm{~B}}+10 x_{2 \mathrm{C}}+8 x_{2 \mathrm{D}} \\
& +14 x_{3 \mathrm{~A}}+100 x_{3 \mathrm{~B}}+7 x_{3 \mathrm{C}}+11 x_{3 \mathrm{D}} \\
& +6 x_{4 \mathrm{~A}}+8 x_{4 \mathrm{~B}}+10 x_{4 \mathrm{C}}+9 x_{4 \mathrm{D}}
\end{aligned}
$$

subject to
$x_{1 \mathrm{~A}}+x_{1 \mathrm{~B}}+x_{1 \mathrm{C}}+x_{1 \mathrm{D}}=1$
$x_{2 \mathrm{~A}}+x_{2 \mathrm{~B}}+x_{2 \mathrm{C}}+x_{2 \mathrm{D}}=1$
$x_{3 \mathrm{~A}}+x_{3 \mathrm{~B}}+x_{3 \mathrm{C}}+x_{3 \mathrm{D}}=1$
$x_{4 \mathrm{~A}}+x_{4 \mathrm{~B}}+x_{4 \mathrm{C}}+x_{4 \mathrm{D}}=1$
$x_{1 \mathrm{~A}}+x_{2 \mathrm{~A}}+x_{3 \mathrm{~A}}+x_{4 \mathrm{~A}}=1$
$x_{1 \mathrm{~B}}+x_{2 \mathrm{~B}}+x_{3 \mathrm{~B}}+x_{4 \mathrm{~B}}=1$
$x_{1 \mathrm{C}}+x_{2 \mathrm{C}}+x_{3 \mathrm{C}}+x_{4 \mathrm{C}}=1$
$\begin{aligned} x_{1 \mathrm{D}}+x_{2 \mathrm{D}}+x_{3 \mathrm{D}}+x_{4 \mathrm{D}} & =1 \\ x_{i j} & \geq 0\end{aligned}$
43. $1-\mathrm{B}$

2-D
3-A
4-C
5-E
$Z=51$ days

44

$1-\mathrm{B}$	or
$2-\mathrm{E}$	$1-\mathrm{E}$
$3-\mathrm{A}$	$2-\mathrm{A}$
$4-\mathrm{C}$	$3-\mathrm{B}$
$5-\mathrm{D}$	
$6-\mathrm{F}$	$5-\mathrm{C}$
$Z=\$ 36$	$6-\mathrm{F}$

45
45. $1-\mathrm{C}$ or

2-A $2-\mathrm{A}$
$3-\mathrm{B} \quad 3-\mathrm{B}$
4-D 4-C
$Z=\$ 26$
46. $1-\mathrm{C}$

2-F
3-E
4-A
5 - D
6-B
$Z=85$ defects
47.

A -3	or
B -2	A -6
C -6	B -2
D -1	C -5
E -5	D -3
F -	
$Z=14$ miles	E -1

48. 1,4 and 7 -Columbia

2, 6 and 8 - Atlanta
3, 5 and 9 - Nashville
$Z=985$ (multiple optimal solutions)

[^0]: $Z=\$ 1,198,500$ (multiple optimal solutions)

