Chapter Five: Integer Programming

PROBLEM SUMMARY

1. Integer model, graphical solution
2. Integer model
3. Integer model
4. Integer model
5. Integer model
6. Integer model
7. Integer model
8. Mixed integer model
9. $0-1$ integer model
10. Integer model
11. Integer model
12. $0-1$ integer model
13. Integer model, formulation and computer solution
14. Integer model, formulation and computer solution
15. Set covering problem, integer model, formulation and computer solution
16. Integer model, formulation and computer solution
17. Integer model, formulation and computer solution
18. Integer model, knapsack problem, formulation and computer solution
19. Integer model, formulation and computer solution
20. Plant location problem, integer model, formulation and computer solution
21. Continuation of Problem 20, formulation
22. Continuation of Problem 20, formulation
23. Integer model, formulation and computer solution
24. $0-1$ integer-model, computer solution
25. Integer model, computer solution
26. Integer model, formulation and computer solution
27. Integer model with 0-1 restriction
28. Integer model, formulation and computer solution
29. $0-1$ integer model, computer solution
30. Integer model, formulation and computer solution
31. Mixed-integer model, formulation and computer solution (7-30)
32. Set covering problem, $0-1$ integer model and computer solution
33. $0-1$ integer model and computer solution
34. Set covering problem, 0-1 integer model and computer solution
35. Facility location problem, $0-1$ integer model and computer solution

PROBLEM SOLUTIONS
1.

2. $x_{1}=6, x_{2}=0, Z=18$
3. (a)maximize $Z=50 x_{1}+40 x_{2}$ (profit)
subject to

$$
\begin{aligned}
3 x_{1}+5 x_{2} & \leq 150 \mathrm{yd}^{2} \\
10 x_{1}=4 x_{2} & \leq 200 \mathrm{hr} . \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

(b) Relaxed solution:

$$
x_{1}=10.5, x_{2}=23.7, Z=1,473
$$

Rounded down solution:

$$
x_{1}=10, x_{2}=23, Z=1,420
$$

Integer solution:

$$
x_{1}=10, x_{2}=24, Z=1,460
$$

The rounded down solution is not optimal.
4. (a)maximize $Z=\$ 400 x_{1}+100 x_{2}$ subject to

$$
\begin{aligned}
8 x_{1}=10 x_{2} & \leq 80 \\
2 x_{1}=6 x_{2} & \leq 36 \\
x_{1} & \leq 6 \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

(b) Relaxed solution:

$$
x_{1}=6, x_{2}=3.2, Z=2,720
$$

Rounded down solution:

$$
x_{1}=6, x_{2}=3, Z=2,700
$$

Integer solution:

$$
x_{1}=6, x_{2}=3, Z=2,700
$$

Integer solution same as rounded down solution.
5. (a)maximize $Z=50 x_{1}+10 x_{2}$
subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 15 \\
4 x_{1}+x_{2} & \leq 25 \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

(b) $x_{1}=6, x_{2}=1, Z=310$
6. (a)maximize $Z=600 x_{1}+540 x_{2}+375 x_{3}$ subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & \leq 12 \\
x_{1} & \leq 5 \\
80 x_{1}+70 x_{2}+50 x_{3} & \leq 750 \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and integer }
\end{aligned}
$$

$$
\text { (b) } x_{1}=0, x_{2}=10, x_{3}=1, Z=5,775
$$

7. (a)maximize $Z=50 x_{1}+40 x_{2}$
subject to

$$
\begin{aligned}
2 x_{1}+5 x_{2}, & \leq 35 \\
3 x_{1}+2 x_{2} & \leq 20 \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

Rounded down solution:

$$
x_{1}=2, x_{2}=5, Z=300
$$

Integer solution:

$$
x_{1}=4, x_{2}=4, Z=360
$$

The rounded down solution is not optimal.
8. (a)maximize $Z=\$ 8000 x_{1}+6000 x_{2}$
subject to

$$
70 x_{1}+30 x_{2}, \leq 500
$$

$$
x_{1}+2 x_{2} \leq 14
$$

$x_{1} \geq 0$ and integer $x_{2} \geq 0$
(b) $x_{1}=5, x_{2}=4.5, Z=67,000$
9. $x_{1}=1, x_{2}=0, x_{3}=1, Z=1,800$
10. $x_{1}=0, x_{2}=4, x_{3}=1.33, Z=29.32$
11. minimize $Z=81 x_{1}+50 x_{2}$
subject to

$$
\begin{aligned}
76 x_{1}=53 x_{2} & \geq 600 \\
x_{1}+x_{2} & \leq 10 \\
1.3 x_{1}=4.1 x_{2}, & \leq 24 \\
x_{1}, x_{2} & \geq 0 \text { and integer }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& x_{1}=6 \\
& x_{2}=3 \\
& Z=\$ 636
\end{aligned}
$$

12. $x_{1}=1, x_{4}=1, Z=60$
13. a. Maximize $Z=85,000 x_{1}+60,000 x_{2}-18,000 y_{1}$ subject to

$$
10,000 x_{1}+7,000 x_{2} \leq 72,000
$$

$$
x_{1}-10 y_{1} \leq 0
$$

$$
x_{1}, x_{2} \geq 0 \text { and integer }
$$

$$
y_{1}=0 \text { or } 1
$$

b. $x_{1}=0, x_{2}=10, y_{1}=0, Z=\$ 600,000$
(b) Relaxed solution:

$$
x_{1}=2.73, x_{2}=5.91, Z=372.9
$$

14. a. Maximize $Z=\$.36 x_{1}+.82 x_{2}+.29 x_{3}+.16 x_{4}$

$$
+.56 x_{5}+.61 x_{6}+.48 x_{7}+.41 x_{8}
$$

subject to

$$
\begin{array}{r}
60 x_{1}+110 x_{2}+53 x_{3}+47 x_{4}+ \\
92 x_{5}+85 x_{6}+73 x_{7}+65 x_{8} \leq 300 \\
7 x_{1}+9 x_{2}+8 x_{3}+4 x_{4}+7 x_{5}+ \\
6 x_{6}+8 x_{7}+5 x_{8} \leq 40 \\
x_{2}-x_{5} \leq 0 \\
x_{i}=0 \text { or } 1
\end{array}
$$

b. $Z=\$ 1.99$ million; $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=0$, $x_{5}=1, x_{6}=1, x_{7}=0$
15. a. $x_{i}=$ no. of employees assigned to time period i, $i=1,2, \ldots, 6$ (time period $1=12: 00$ midnight4:00 А.м.; period $2=4: 00-8: 00$ а.м.; etc.)
minimize $Z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$ subject to

$$
\begin{aligned}
x_{6}+x_{1} & \geq 90 \\
x_{1}+x_{2} & \geq 215 \\
x_{2}+x_{3} & \geq 250 \\
x_{3}+x_{4} & \geq 65 \\
x_{4}+x_{5} & \geq 300 \\
x_{5}+x_{6} & \geq 125 \\
x_{i} & \geq 0 \\
\text { b. } x_{1}=90, & x_{2}=250, x_{3}=0, x_{4}=175, x_{5}=125,
\end{aligned}
$$ $x_{6}=0, Z=640$

16. $x_{1}=$ day contacts by phone
$x_{2}=$ day contacts in person
$x_{3}=$ night contacts by phone
$x_{4}=$ night contacts in person
Maximize $Z=\$ 16 x_{1}+33 x_{2}+17 x_{3}+37 x_{4}$
subject to:

$$
\begin{aligned}
x_{2}+x_{4} & \leq 575 \\
6 x_{1}+13 x_{2} & \leq 1,320 \\
7 x_{3}+19 x_{4} & \leq 2,580 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 \text { and integer }
\end{aligned}
$$

Integer solution:

$$
\begin{aligned}
x_{1} & =220 \\
x_{3} & =368 \\
Z & =\$ 9,776
\end{aligned}
$$

The non-integer solution is:

$$
\begin{aligned}
x_{1} & =220 \\
x_{3} & =368.57 \\
Z & =\$ 9,785.71
\end{aligned}
$$

The rounded down solution is only slightly less (i.e., \$9.71)
17. (a) $x_{1}=$ tv ads
$x_{2}=$ newspaper ads
$x_{3}=$ radio ads
minimize $Z=\$ 25,000 x_{1}+7,000 x_{2}+9,000 x_{3}$
subject to:

$$
\begin{aligned}
53,000 x_{1}+30,000 x_{2}+41,000 x_{3} & \geq 200,000 \\
\frac{32,000 x_{1}+20,000 x_{2}+18,000 x_{3}}{\left(21,000 x_{1}+10,000 x_{2}+23,000 x_{3}\right)} & \geq 1.5 \\
\frac{34,000 x_{1}+12,000 x_{2}+24,000 x_{3}}{\left(53,000 x_{1}+30,000 x_{2}+41,000 x_{3}\right)} & \geq .60 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 \text { and integer }
\end{aligned}
$$

Integer solution:

$$
\begin{aligned}
x_{1} & =4 \\
x_{2} & =0 \\
x_{3} & =0 \\
Z & =\$ 99,999.99
\end{aligned}
$$

(b) Non-integer solution:

$$
\begin{aligned}
x_{1} & =2.9275 \\
x_{2} & =.9713 \\
x_{3} & =.383 \\
Z & =\$ 83,433.65
\end{aligned}
$$

18. Maximize $Z=90 x_{1}+150 x_{2}+30 x_{3}$ subject to

$$
2 x_{1}+3 x_{2}+x_{3} \leq 5
$$

Solution: $Z=\$ 240, x_{1}=1, x_{2}=1, x_{3}=0$
19. $x_{1}=$ no. of salespeople to East, $x_{2}=$ no. of salespeople to Midwest, $x_{3}=$ no. of salespeople to West
maximize $Z=25,000 x_{1}+18,000 x_{2}+31,000 x_{3}$
subject to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =100 \\
5,000 x_{1}+11,000 x_{2}+7,000 x_{3} & \leq 700,000 \\
x_{1} & \geq 10 \\
x_{2} & \geq 10 \\
x_{3} & \geq 10 \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and integer }
\end{aligned}
$$

Solution: $x_{1}=20, x_{2}=10, x_{3}=70, Z=2,850,000$
20. $x_{\mathrm{ij}}=$ vehicles $[1,000 \mathrm{~s}$ shipped from plant $i(i=$ $1,2,3,4,5)$ to warehouse $j(j=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}), y_{i}=$ plant i $(i=1,2,3,4,5)=0$ or 1
minimize $Z=2,100 y_{1}+850 y_{2}+1,800 y_{3}$
$+1,100 y_{4}+900 y_{5}+56 x_{1 \mathrm{~A}}$
$+21 x_{1 \mathrm{~B}}+32 x_{1 \mathrm{C}}+65 x_{1 \mathrm{D}}$
$+18 x_{2 \mathrm{~A}}+46 x_{2 \mathrm{~B}}+7 x_{2 \mathrm{C}}$
$+35 x_{2 \mathrm{D}}+12 x_{3 \mathrm{~A}}+71 x_{3 \mathrm{~B}}$
$+41 x_{3 \mathrm{C}}+52 x_{3 \mathrm{D}}+30 x_{4 \mathrm{~A}}$
$+24 x_{4 \mathrm{~B}}+28 x_{4 \mathrm{D}}+45 x_{5 \mathrm{~A}}$
$+50 x_{5 \mathrm{~B}}+26 x_{5 \mathrm{C}}+31 x_{5 \mathrm{D}}+61 x_{4 \mathrm{C}}$
subject to

$$
\begin{aligned}
c_{1}-x_{1 \mathrm{~A}}-x_{1 \mathrm{~B}}-x_{1 \mathrm{C}}-x_{1 \mathrm{D}} & =0 \\
c_{2}-x_{2 \mathrm{~A}}-x_{2 \mathrm{~B}}-x_{2 \mathrm{C}}-x_{2 \mathrm{D}} & =0 \\
c_{3}-x_{3 \mathrm{~A}}-x_{3 \mathrm{~B}}-x_{3 \mathrm{C}}-x_{3 \mathrm{D}} & =0 \\
c_{4}-x_{4 \mathrm{~A}}-x_{4 \mathrm{~B}}-x_{4 \mathrm{C}}-x_{4 \mathrm{D}} & =0 \\
c_{5}-x_{5 \mathrm{~A}}-x_{5 \mathrm{~B}}-x_{5 \mathrm{C}}-x_{5 \mathrm{D}} & =0 \\
x_{1 \mathrm{~A}}+x_{2 \mathrm{~A}}+x_{3 \mathrm{~A}}+x_{4 \mathrm{~A}}+x_{5 \mathrm{~A}} & =6,000 \\
x_{1 \mathrm{~B}}+x_{2 \mathrm{~B}}+x_{3 \mathrm{~B}}+x_{4 \mathrm{~B}}+x_{5 \mathrm{~B}} & =14,000 \\
x_{1 \mathrm{C}}+x_{2 \mathrm{C}}+x_{3 \mathrm{C}}+x_{4 \mathrm{C}}+x_{5 \mathrm{C}} & =8,000 \\
x_{1 \mathrm{D}}+x_{2 \mathrm{D}}+x_{3 \mathrm{D}}+x_{4 \mathrm{D}}+x_{5 \mathrm{D}} & =10,000 \\
c_{1} & \leq 12,000 y_{1} \\
c_{2} & \leq 18,000 y_{2} \\
c_{3} & \leq 14,000 y_{3} \\
c_{4} & \leq 10,000 y_{4} \\
c_{5} & \leq 16,000 y_{5}
\end{aligned}
$$

Solution: $y_{2}, y_{4}, y_{5}=1, x_{2 \mathrm{~A}}=6,000$
$x_{2 \mathrm{~B}}=4,000, x_{2 \mathrm{C}}=2,000, x_{4 \mathrm{~B}}=10,000$,
$x_{5 \mathrm{C}}=6,000, x_{5 \mathrm{D}}=10,000, Z=\$ 3,902,000$
21. Add the constraint $y_{2}+y_{4} \leq 1$.

Solution: $y_{2}, y_{3}, y_{5}=1, x_{2 \mathrm{~B}}=14,000$
$x_{2 \mathrm{C}}=2,000, x_{3 \mathrm{~A}}=6,000, x_{5 \mathrm{C}}=6,000$,
$x_{5 \mathrm{D}}=10,000, Z=\$ 4,786,000$
22. Add the constraint $y_{5} \leq y_{1}$.

Solution: $y_{1}, y_{2}, y_{5}=1, x_{1 \mathrm{~B}}=12,000$
$x_{2 \mathrm{~A}}=6,000, x_{2 \mathrm{~B}}=2,000, x_{2 \mathrm{C}}=2,000$,
$x_{5 \mathrm{C}}=6,000, x_{5 \mathrm{D}}=10,000, Z=\$ 4,822,000$
23. Maximize $Z=12,100 x_{1}+8,700 x_{2}+10,500 x_{3}$ subject to:

$$
\begin{aligned}
360 x_{1}+375 x_{2}+410 x_{3} & \leq 30,000 \\
x_{1}+x_{2}+x_{3} & \leq 67 \\
14 x_{1}+10 x_{2}+18 x_{3} & \leq 2,200 \\
x_{1} / x_{3} & \geq 2 \\
x_{2} / x_{1} & \geq 1.5 \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and interger }
\end{aligned}
$$

Integer solution:

$$
\begin{aligned}
& x_{1}=22 \\
& x_{2}=34 \\
& x_{3}=11 \\
& Z=\$ 677,500
\end{aligned}
$$

24. a) minimize $\mathrm{Z}=5 x_{1}+10 x_{2}+8 x_{3}+12 x_{4}+7 x_{5}$ $+10 x_{6}+8 x_{7}$
subject to

$$
\begin{gathered}
\frac{9 x_{1}+6 x_{2}+6 x_{3}+3 x_{4}+6 x_{5}+3 x_{6}+9 x_{7}}{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}\right)} \geq 2.00 \\
3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}\right) \geq 12 \\
x_{2}+x_{3}+x_{4}+x_{6} \leq 2 \\
x_{1}+x_{2}+x_{6}+x_{7} \geq 3 \\
x_{i}=0 \text { or } 1
\end{gathered}
$$

b) $x_{1}=1$ (Management I)
$x_{2}=1$ (Principles of Accounting)
$x_{5}=1$ (Marketing Management)
$x_{7}=1$ (English Literature)
$Z=30$ hours per week
Minimum grade point average $=2.50$
25. a) maximize $Z=1,650 x_{1}+850 x_{2}+790 x_{3}$
subject to
$6.3 x_{1}+3.9 x_{2}+3.1 x_{3} \leq 125$
$17 x_{1}+10 x_{2}+7 x_{3} \leq 320$
$x_{1}, x_{2}, x_{3}, \geq 0$ and integer
b) $x_{1}=10$
$x_{3}=20$
$Z=32,300$
The relaxed, noninteger solution is,

$$
\begin{aligned}
x_{1} & =13.61 \\
x_{3} & =12.67 \\
Z & =32,460.46
\end{aligned}
$$

The rounded down solution is $x_{1}=13$, $x_{3}=12$, and $Z=30,930$, which is not optimal.
26. maximize $Z=575 x_{1}+120 x_{2}$
subject to
$40 x_{1}+15 x_{2} \leq 600$
$30 x_{1}+18 x_{2} \leq 480$
$4 x_{1}-x_{2} \leq 0$
$x_{1}, x_{2} \geq 0$ and integer
Optimal solution:

$$
\begin{aligned}
& x_{1}=4 \\
& x_{2}=20 \\
& Z=4,700
\end{aligned}
$$

27. Maximize $Z=\$ 575 x_{1}+120 x_{2}+45 x_{3}$
subject to:

$$
\begin{aligned}
40 x_{1}+15 x_{2}+4 x_{3} & \leq 600 \\
30 x_{1}+18 x_{2}+5 x_{3} & \leq 480 \\
4 x_{1}-x_{2} & \leq 0 \\
x_{3} & =20 y_{1} \\
x_{1}, x_{2}, x_{3} & \geq 0 \text { and interger } \\
y_{1} & =0 \text { or } 1
\end{aligned}
$$

Or the last restriction that $y_{1}=0$ or 0 can be included in the model as a constraint, $y_{1} \leq 1$.

Solution:

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=16 \\
& x_{3}=20 \\
& y_{1}=1 \\
& Z=\$ 4,745
\end{aligned}
$$

They should produce the batch of 20 stools since the profit is slightly greater ($\$ 4,745 \mathrm{vs}$. $\$ 4,700$).
28. $x_{1}=$ bass boat
$x_{2}=$ ski boat
$x_{3}=$ speed boat
Maximize $Z=20,500 x_{1}+12,000 x_{2}+22,300 x_{3}$ subject to:
$1.3 x_{1}+1.0 x_{2}+1.5 x_{3} \leq 210$
$\frac{x_{1}}{\left(x_{2}+x_{3}\right)} \leq 2$
$x_{1}+2 x_{3} \leq 160$
$x_{1}, x_{2}, x_{3} \geq 0$ and integer
Solution:
$x_{1}=110$
$x_{2}=31$
$x_{3}=24$
$Z=\$ 3,162,200$
29. a. maximize $Z=18 x_{1 A}+20 x_{1 B}+21 x_{1 C}+17 x_{1 D}$ $+19 x_{2 A}+15 x_{2 B}+22 x_{2 C}+18 x_{2 D}+20 x_{3 A}+$ $20 x_{3 B}+17 x_{3 C}+19 x_{3 D}+24 x_{4 A}+21 x_{4 B}+$ $16 x_{4 C}+23 x_{4 D}+22 x_{5 A}+19 x_{5 B}+21 x_{5 C}+$ $21 x_{5 D}$
subject to

$$
\begin{gathered}
\left(.3 x_{1 A}+.9 x_{1 B}+.6 x_{1 C}+.4 x_{1 D}+.8 x_{2 A}+.5 x_{2 B}\right. \\
+1.1 x_{2 C}+.7 x_{2 D}+1.1 x_{3 A}+1.3 x_{3 B}+.6 x_{3 C}+ \\
.8 x_{3 D}+1.2 x_{4 A}+.8 x_{4 B}+.6 x_{4 C}+.9 x_{4 D}+ \\
\left.1.0 x_{5 A}+.9 x_{5 B}+1.0 x_{5 C}+1.0 x_{5 D}\right) /\left(18 x_{1 A}+\right. \\
20 x_{1 B}+21 x_{1 C}+17 x_{1 D}+19 x_{2 A}+15 x_{2 B}+ \\
22 x_{2 C}+18 x_{2 D}+20 x_{3 A}+20 x_{3 B}+17 x_{3 C}+ \\
19 x_{3 D}+24 x_{4 A}+21 x_{4 B}+16 x_{4 C}+23 x_{4 D}+ \\
\left.22 x_{5 A}+19 x_{5 B}+21 x_{5 C}+21 x_{5 D}\right) \leq .04 \\
x_{1 A}+x_{1 B}+x_{1 C}+x_{1 D} \leq 1 \\
x_{2 A}+x_{2 B}+x_{2 C}+x_{2 D} \leq 1 \\
x_{3 A}+x_{3 B}+x_{3 C}+x_{3 D} \leq 1 \\
x_{4 A}+x_{4 B}+x_{4 C}+x_{4 D} \leq 1 \\
x_{5 A}+x_{5 B}+x_{5 C}+x_{5 D} \leq 1 \\
x_{1 A}+x_{2 A}+x_{3 A}+x_{4 A}+x_{5 A}=1 \\
x_{1 B}+x_{2 B}+x_{3 B}+x_{4 B}+x_{5 B}=1 \\
x_{1 C}+x_{2 C}+x_{3 C}+x_{4 C}+x_{5 C}=1 \\
x_{1 D}+x_{2 D}+x_{3 D}+x_{4 D}+x_{5 D}=1 \\
x_{i j}=0 \text { or } 1
\end{gathered}
$$

b) $\quad \mathrm{x}_{1 C}=1$

$$
x_{3 D}=1
$$

$$
\mathrm{x}_{4 B}=1
$$

$$
x_{5 A}=1
$$

$$
\mathrm{Z}=83 \text { parts }
$$

30. Minimize $Z=120 x_{1}+75 x_{2}$ subject to:

$$
\begin{aligned}
220 x_{1}+140 x_{2} & \leq 6,300 \\
x_{1}+x_{2} & \leq 32 \\
.4 x_{1}+.9 x_{2} & \leq 15 \\
x_{1}, x_{2} & \geq 0 \text { and interger }
\end{aligned}
$$

Non-integer solution:

$$
\begin{aligned}
x_{1} & =25.1409 \\
x_{2} & =5.493 \\
Z & =\$ 3,428.87
\end{aligned}
$$

Integer solution:

$$
\begin{aligned}
x_{1} & =28 \\
x_{2} & =1 \\
Z & =\$ 3,435
\end{aligned}
$$

