Chapter Four: Linear Programming: Modeling Examples

PROBLEM SUMMARY

- 1. "Product mix" example
- 2. "Diet" example
- **3.** "Investment" example
- 4. "Marketing" example
- **5.** "Transportation" example
- 6. "Blend" example
- 7. Product mix (maximization)
- **8.** Sensitivity analysis (4–7)
- 9. Diet (minimization)
- **10.** Product mix (minimization)
- **11.** Product mix (maximization)
- **12.** Product mix (maximization)
- **13.** Product mix (maximization)
- 14. Ingredients mix (minimization)
- **15.** Transportation (maximization)
- **16.** Product mix (maximization)
- **17.** Ingredients mix (minimization)
- **18.** Crop distribution (maximization)
- **19.** Monetary allocation (maximization)
- **20.** Diet (minimization), sensitivity analysis
- **21.** Transportation (maximization)
- **22.** Transportation (minimization)
- 23. Warehouse scheduling (minimization)
- 24. School busing (minimization)
- **25.** Sensitivity analysis (4–24)
- **26.** Ingredients mixture (minimization)
- 27. Interview scheduling (maximization)
- **28.** Investments mixture (maximization)
- **29.** Insurance poly mix (maximization)
- **30.** Product mix (maximization)
- **31.** Advertising mix (minimization), sensitivity analysis

- **32.** Blend (maximization)
- **33.** Multiperiod borrowing (minimization)
- **34.** Multiperiod production scheduling (minimization)
- **35.** Blend (maximization), sensitivity analysis
- **36.** Assignment (minimization), sensitivity analysis
- **37.** Transportation (minimization)
- **38.** Scheduling (minimization)
- **39.** Production line scheduling (maximization)
- 40. Network flow (minimization)
- **41.** Investment example" in chapter (maximization)
- 42. Blend (maximization)
- **43.** Trim loss (minimization)
- **44.** Multiperiod investment (maximization)
- **45.** Multiperiod sales and inventory (maximization)
- **46.** Multiperiod production and inventory (minimization)
- **47.** Employee assignment (maximization)
- 48. Data envelopment analysis
- **49.** Data envelopment analysis
- **50.** Network flow (maximization)
- **51.** Multiperiod workforce planning (minimization)
- **52.** Integer solution (4–43)
- **53.** Machine scheduling (maximization), sensitivity analysis
- **54.** Cargo storage (maximization)
- **55.** Broadcast scheduling (maximization)
- 56. Product mix (maximization)
- **57.** Product mix/advertising (maximization)
- **58.** Scheduling (minimization)
- **59.** Truck purchasing/leasing (minimization)

or,

 $20,000 - 12,000x_2 = 0$ $20,000x_1 - 9,000x_3 = 0$

The new solution is $x_1 = 3.068$, $x_2 = 5.114$, $x_3 = 6.818$ and Z = 184,090. This results in approximately 61,362 exposures per type of advertising (with some slight differences due to computer rounding).

 The slack variables for the three ≤ warehouse constraints would be added to the constraints as follows,

$$x_{1A} + x_{1B} + x_{1C} + s_1 = 300$$

$$x_{2A} + x_{2B} + x_{2C} + s_2 = 200$$

$$x_{3A} + x_{3B} + x_{3C} + s_3 = 200$$

These three slacks would then be added to the objective function with the storage cost coefficients of \$9 for s_1 , \$6 for s_2 and \$7 for s_3 .

This change would not result in a new solution.

The model must be reformulated with three new variables reflecting the shipments from the new warehouse at Memphis (4) to the three stores, x_{4A} , x_{4B} , and x_{4C} . These variables must be included in the objective function with the cost coefficients of \$18, 9 and 12 respectively. A new supply constraint must be added,

 $x_{4A} + x_{4B} + x_{4C} \le 200$

The solution to this reformulated model is,

$$x_{1C} = 200$$

 $x_{2B} = 50$
 $x_{3A} = 150$
 $x_{4B} = 200$
 $Z = 6,550$

Yes, the warehouse should be leased.

The shadow price for the Atlanta warehouse shows the greatest decrease in cost, \$6 for every additional set supplied from this source. However, the upper limit of the sensitivity range is 200, the same as the current supply value. Thus, if the supply is increased at Atlanta by even one television set the shadow price will change.

6. This change would not affect the solution at all since there is no surplus with any of the three constraints.

Component 1 has the greatest dual price of \$20. For each barrel of component 1 the company can acquire, profit will increase by \$20, up to the limit of the sensitivity range which is an increase of 1,700 bbls. or 6,200 total bbls. of component 1. For example an increase of one bbl. of component 1 from 4,500 to 4,501 results in a increase in total cost to \$76,820.

7. (a)maximize $Z = \$190x_1 + 170x_2 + 155x_3$ subject to

 $\begin{array}{l} 3.5x_1+5.2x_2+2.8x_3\leq 500\\ 1.2x_1+0.8x_2+1.5x_3\leq 240\\ 40x_1+55x_2+20x_3\leq 6{,}500\\ x_1{,}x_2{,}x_3\geq 0 \end{array}$

- **(b)** $x_1 = 41.27, x_2 = 0, x_3 = 126.98, Z = $27,523.81$ $s_1 = s_2 = 0, s_3 = 2,309.52$
- 8. (a) It would not affect the model. The slack apples are multiplied by the revenue per apple of \$.08 to determine the extra total revenue, i.e., (2,309.52)(\$.08) = \$184.76.
 - (b) This change requires a new variable, x_4 , and that the constraint for apples be changed from \leq to =. No, the Friendly's should not produce cider. The new solution would be $x_1 = 135$, $x_2 = 0$, $x_3 = 0$, $x_4 = 18.33$ and Z = \$26,475. This reduction in profit occurs because the requirement that all 6,500 apples be used forces resources to be used for cider that would be more profitable to be used to produce the other products. If the final model constraint for apples is, \leq rather than =, the previous solution in 1(b) results.
- **9.** (a) $x_1 = \text{no. of eggs}$

 $x_2 =$ no. of bacon strips $x_3 =$ no. of cups of cereal

minimize $Z = 4x_1 + 3x_2 + 2x_3$ subject to

$$2x_1 + 4x_2 + x_3 \ge 16
3x_1 + 2x_2 + x_3 \ge 12
x_1, x_2, x_3 \ge 0$$

(b) $x_1 = 2$ $x_2 = 3$ Z = \$0.17

10.(a) x_i = number of boats of type *i*, *i* = 1 (bass boat), 2 (ski boat), 3 (speed boat)

In order to break even total revenue must equal total cost:

 $23,000x_1 + 18,000x_2 + 26,000x_3 = 12,500x_1 + 8,500x_2 + 13,700x_3 + 2,800,000$

or,

 $10,500x_1 + 9,500x_2 + 12,300x_3 = 2,800,000$ minimize $Z = 12,500x_1 + 8,500x_2 + 13,700x_3$ subject to $10,500x_1 + 9,500x_2 + 12,300x_3 = 2,800,000$ $x_1 \ge 70$ $x_2 \ge 50$ $x_3 \ge 50$ $x_1 \le 120$ $x_2 \le 120$ $x_3 \le 120$ $x_1, x_2, x_3 \ge 0$ $(\mathbf{b})x_1 = 70.00$ $x_2 = 120.00$ $x_3 = 75.203$ *Z* = \$2,925,284.553 **11.(a)** x_1 = no. of clocks $x_2 = no. of radios$ $x_3 = no.$ of toasters maximize $Z = 8x_1 + 10x_2 + 7x_3$ subject to $7x_1 + 10x_2 + 5x_3 \le 2,000$ $2x_1 + 3x_2 + 2x_3 \le 660$ $x_1 \le 200$ $x_2 \le 300$ $x_3 \le 150$ $x_1, x_2, x_3 \ge 0$ $(\mathbf{b})x_1 = 178.571$ $x_3 = 150.00$ Z = \$2,478.571**12.(a)** x_1 = no. of gallons of Yodel $x_2 = no. of gallons of Shotz$ $x_3 = no.$ of gallons of Rainwater maximize $Z = 1.50x_1 + 1.60x_2 + 1.25x_3$ subject to $x_1 + x_2 + x_3 = 1,000$ $1.50x_1 + .90x_2 + .50x_3 \le 2,000$ $x_1 \le 400$ $x_2 \le 500$ $x_3 \le 300$ $x_1, x_2, x_3 \ge 0$ $(\mathbf{b})x_1 = 400$ $x_2 = 500$ $x_3 = 100$ Z = \$1,525.00

13.(a) x_1 = no. of lb of Super Two at Fresno $x_2 = no. of lb of Super Two at Dearborn$ $x_3 = no.$ of lb of Green Grow at Fresno x_4 = no. of lb of Green Grow at Dearborn maximize $Z = 7x_1 + 5x_2 + 5x_3 + 4x_4$ subject to $2x_1 + 4x_2 + 2x_3 + 3x_4 \le 45,000$ $x_1 + x_2 \le 6,000$ $x_3 + x_4 \le 7,000$ $x_1 + x_3 \le 5,000$ $x_2 + x_4 \le 6,000$ $x_1, x_2, x_3, x_4 \ge 0$ $(\mathbf{b})x_1 = 5,000$ $x_2 = 1,000$ $x_4 = 5,000$ Z = \$60,000**14.(a)** x_i = ore i (i = 1,2,3,4,5,6) minimize $Z = 27x_1 + 25x_2 + 32x_3 + 22x_4 +$ $20x_5 + 24x_6$ subject to $.19x_1 + .43x_2 + .17x_3 + .20x_4 + .12x_6 \ge .21$ $.15x_1 + .10x_2 + .12x_4 + .24x_5 + .18x_6 \le .12$ $.12x_1 + .25x_2 + .10x_5 + .16x_6 \le .07$ $.14x_1 + .07x_2 + .53x_3 + .18x_4 + 0.31x_5 + .25x_6 \ge .30$ $.14x_1 + .07x_2 + .53x_3 + .18x_4 + .31x_5 + .25x_6 \le .65$ $.60x_1 + .85x_2 + .70x_3 + .50x_4 + .65x_5 + .71x_6 = 1.00$ $(\mathbf{b})x_2 = .1153 \text{ ton} - \text{ore } 2$ $x_3 = .8487 \text{ ton} - \text{ore } 3$ $x_4 = .0806 \text{ ton} - \text{ore } 4$ $x_5 = .4116 \text{ ton} - \text{ore } 5$ Z = \$40.05**15.(a)** x_{ii} = number of trucks assigned to route from warehouse *i* to terminal *j*, where i = 1(Charlotte), 2 (Memphis), 3 (Louisville) and j = a (St. Louis), b (Atlanta), c (New York) maximize $Z = 1.800x_{1a} + 2,100x_{1b} + 1,600x_{1c}$ $+1,000x_{2a} + 700x_{2b} + 900x_{2c} + 1,400x_{3a}$ $+800x_{3b}+2,200x_{3c}$ subject to $x_{1a} + x_{1b} + x_{1c} = 30$ $x_{2a} + x_{2b} + x_{2c} = 30$ $x_{3a} + x_{3b} + x_{3c} = 30$ $x_{1a} + x_{2a} + x_{3a} \le 40$ $x_{1b} + x_{2b} + x_{3b} \le 60$ $x_{1c} + x_{2c} + x_{3c} \le 50$ $x_{ii} \ge 0$

(b) $x_{1b} = 30$ $x_{2a} = 30$ $x_{3c} = 30$ Z = \$159,000**16.** (a) x_1 = no. of sofas $x_2 = no.$ of tables $x_3 = no. of chairs$ maximize $Z = 400x_1 + 275x_2 + 190x_3$ subject to $7x_1 + 5x_2 + 4x_3 \le 2,250$ $12x_1 + 7x_3 \le 1,000$ $6x_1 + 9x_2 + 5x_3 \le 240$ $x_1 + x_2 + x_3 \le 650$ $x_1, x_2, x_3 \ge 0$ $(\mathbf{b})x_1 = 40$ Z = \$16,00017. (a) x_{ii} = lbs. of seed *i* used in mix *j*, where *i* = t (tall fescue), m (mustang fescue), b (bluegrass) and j = 1, 2, 3. minimize $Z = 1.70 (x_{t1} + x_{t2} + x_{t3}) + 2.80$ $(x_{m1} + x_{m2} + x_{m3}) + 3.25 (x_{b1} + x_{b2} + x_{b3})$ subject to $.50x_{t1} - .50x_{m1} - .50x_{b1} \le 0$ $-.20x_{t1} + .80x_{m1} - .20x_{b1} \ge 0$ $-.30x_{t2} - .30x_{m2} + .70x_{b2} \ge 0$ $-.30x_{t2} + .70x_{m2} - .30x_{b2} \ge 0$ $.80x_{t2} - .20x_{m2} - .20x_{b2} \le 0$ $.50x_{t3} - .50x_{m3} - .50x_{b3} \ge 0$ $.30x_{t3} - .70x_{m3} - .70x_{b3} \le 0$ $-.10x_{t3} - .10x_{m3} + .90x_{b3} \ge 0$ $x_{t1} + x_{m1} + x_{b1} \ge 1,200$ $x_{t2} + x_{m2} + x_{b2} \ge 900$ $x_{t3} + x_{m3} + x_{b3} \ge 2,400$ $x_{ij} \ge 0$ **(b)** $x_{t1} = 600$ $x_{t2} = 180$ $x_{t3} = 1,680$ $x_{m1} = 600$ $x_{m2} = 450$ $x_{m3} = 480$ $x_{h1} = 0$ $x_{b2} = 270$ $x_{b3} = 240$ Z = \$10,123.50

18. (a) x_{ii} = acres of crop *i* planted on plot *j*, where i = c (corn), p (peas), s (soybeans) and j = 1,2,3maximize $Z = 600(x_{c1} + x_{c2} + x_{c3})$ $+450(x_{p1} + x_{p2} + x_{p3})$ $+ 300(x_{s1} + x_{s2} + x_{s3})$ subject to $x_{c1} + x_{p1} + x_{s1} \ge 300$ $x_{c1} + x_{p1} + x_{s1} \le 500$ $x_{c2} + x_{p2} + x_{s2} \ge 480$ $x_{c2} + x_{p2} + x_{s2} \le 800$ $x_{c3} + x_{p3} + x_{s3} \ge 420$ $x_{c3} + x_{p3} + x_{s3} \le 700$ $x_{c1} + x_{c2} + x_{c3} \le 900$ $x_{p1} + x_{p2} + x_{p3} \le 700$ $x_{s1} + x_{s2} + x_{s3} \le 1,000$ $800(x_{c1} + x_{p1} + x_{s1}) 500(x_{c2} + x_{p2} + x_{s2}) = 0$ $700(x_{c2} + x_{p2} + x_{s2}) 800(x_{c3} + x_{p3} + x_{s3}) = 0$ $700(x_{c1} + x_{p1} + x_{s1}) 500(x_{c3} + x_{p3} + x_{s3}) = 0$ $x_{ii} \ge 0$ $(\mathbf{b})x_{c1} = 500$ $x_{c2} = 100$ $x_{c3} = 300$ $x_{p2} = 700$ $x_{s3} = 400$ Z = \$975,000**19.** (a) $x_1 =$ \$ allocated to job training $x_2 =$ \$ allocated to parks $x_3 =$ \$ allocated to sanitation $x_4 =$ \$ allocated to library maximize $Z = .02x_1 + .09x_2 + .06x_3 + .04x_4$ subject to $x_1 + x_2 + x_3 + x_4 = 4,000,000$ $x_1 \leq 1,600,000$ $x_2 \leq 1,600,000$ $x_3 \leq 1,600,000$ $x_4 \leq 1,600,000$ $x_2 - x_3 - x_4 \le 0$ $x_1 - x_3 \ge 0$ $x_1, x_2, x_3, x_4 \ge 0$ **(b)** $x_1 = 800,000$ $x_2 = 1,600,000$ $x_3 = 800,000$ $x_4 = 800,000$ Z = 240,000

20. (a) minimize $Z = .80x_1 + 3.70x_2 + 2.30x_3 + .90x_4$ + .75x₅ + .40x₆ + .83x₇ subject to

 $520x_{1} + 500x_{2} + 860x_{3} + 600x_{4} + 50x_{5} + 460x_{6} + 240x_{7} \ge 1,500$ $520x_{1} + 500x_{2} + 860x_{3} + 600x_{4} + 50x_{5} + 460x_{6} + 240x_{7} \le 2,000$ $4.4x_{1} + 3.3x_{2} + .3x_{3} + 3.4x_{4} + .5x_{5} + 2.2x_{6} + .2x_{7} \ge 5$ $30x_{1} + 5x_{2} + 75x_{3} + 3x_{4} + 10x_{7} \ge 20$ $30x_{1} + 5x_{2} + 75x_{3} + 3x_{4} + 10x_{7} \le 60$ $17x_{1} + 85x_{2} + 82x_{3} + 10x_{4} + 6x_{5} + 10x_{6} + 16x_{7} \ge 30$ $30x_{4} + 70x_{6} + 22x_{7} \ge 40$ $180x_{1} + 90x_{2} + 350x_{3} + 20x_{7} \le 30$ $x_{1} \ge 0$

- **(b)** $x_4 = 1.667$ $x_6 = 0.304$ $x_7 = 1.500$ Z = \$2.867
- (c) The model becomes infeasible and cannot be solved. Limiting each food item to one-half pound is too restrictive. In fact, experimentation with the model will show that one food item in particular, dried beans, is restrictive. All other food items can be limited except dried beans.
- **21.** (a) x_{ij} = number of units of products *i* (*i* = 1,2,3) produced on machine *j* (*j* = 1,2,3,4) maximize $Z = \$7.8x_{11} + 7.8x_{12} + 8.2x_{13} + 7.9x_{14} + 6.7x_{21} + 8.9x_{22} + 9.2x_{23} + 6.3x_{24} + 8.4x_{31} + 8.1x_{32} + 9.0x_{33} + 5.8x_{34}$ subject to $35x_{11} + 40x_{21} + 38x_{31} \le 9,000$ $41x_{12} + 36x_{22} + 37x_{32} \le 14,400$

$$34x_{13} + 32x_{23} + 33x_{33} \le 12,000$$

$$39x_{14} + 43x_{24} + 40x_{34} \le 15,000$$

$$x_{11} + x_{12} + x_{13} + x_{14} = 400$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 570$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 320$$

$$x_{ij} \ge 0$$

(b) $x_{11} = 15.385$ $x_{14} = 384.615$ $x_{22} = 400.00$ $x_{23} = 170.00$ $x_{31} = 121.212$ $x_{33} = 198.788$ Z = \$11,089.73 22. (a) Minimize $Z = 69x_{11} + 71x_{12} + 72x_{13} + 74x_{14} + 76x_{21} + 74x_{22} + 75x_{23} + 79x_{24} + 86x_{31} + 89x_{32} + 80x_{33} + 82x_{34}$ subject to

> $x_{11} + x_{12} + x_{13} + x_{14} \le 220$ $x_{21} + x_{22} + x_{23} + x_{24} \le 170$ $x_{31} + x_{32} + x_{33} + x_{34} \le 280$ $x_{11} + x_{21} + x_{31} = 110$ $x_{12} + x_{22} + x_{32} = 160$ $x_{13} + x_{23} + x_{33} = 90$ $x_{14} + x_{24} + x_{34} = 180$

```
Ash: .03x_{11} - .01x_{21} - .02x_{31} \le 0
.04x_{12} + .0x_{22} - .01x_{32} \le 0
.04x_{13} + .0x_{23} - .01x_{33} \le 0
.03x_{14} - .01x_{24} - .02x_{34} \le 0
```

Sulfur: $.01x_{11} - .01x_{21} - .02x_{31} \le 0$ $.01x_{12} + .01x_{22} - .02x_{32} \le 0$ $-.01x_{13} + .03x_{23} - .04x_{33} \le 0$ $.0x_{14} - .02x_{24} - .03x_{34} \le 0$ $x_{ii} \ge 0$

- (b) $x_{11} = 34$ $x_{13} = 11$ $x_{14} = 45$ $x_{23} = 35$ $x_{24} = 135$ $x_{31} = 76$ $x_{32} = 160$ $x_{33} = 44$ Z = \$44,054
- **23.** (a) x_{ij} = space (ft²) rented in month *i* for *j* months, where *i* = 1,2...,6, and *j* = 1,2,...,6

Minimize $Z = 1.70x_{11} + 1.40x_{12} + 1.20x_{13} + 1.10x_{14} + 1.05x_{15} + 1.00x_{16} + 1.70x_{21} + 1.40x_{22} + 1.20x_{23} + 1.10x_{24} + 1.05x_{25} + 1.70x_{31} + 1.40x_{32} + 1.20x_{33} + 1.10x_{34} + 1.70x_{41} + 1.40x_{42} + 1.20x_{43} + 1.70x_{51} + 1.40x_{52} + 1.70x_{61}$ subject to:

```
\begin{array}{c} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} + x_{16} = 47,000 \\ x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{22} + x_{23} \\ & + x_{24} + x_{25} = 35,000 \\ x_{13} + x_{14} + x_{15} + x_{16} + x_{22} + x_{23} + x_{24} \\ & + x_{25} + x_{31} + x_{32} + x_{33} + x_{34} = 52,000 \\ x_{14} + x_{15} + x_{16} + x_{23} + x_{24} + x_{25} + x_{32} \\ & + x_{33} + x_{34} + x_{41} + x_{42} + x_{43} = 27,000 \\ x_{15} + x_{16} + x_{24} + x_{25} + x_{33} + x_{34} + x_{42} \\ & + x_{43} + x_{51} + x_{52} = 19,000 \\ x_{16} + x_{25} + x_{34} + x_{43} + x_{52} + x_{61} = 15,000 \end{array}
```

(b) $x_{11} = 12,000$ $x_{13} = 25,000$ $x_{14} = 8,000$ $x_{15} = 2,000$ $x_{33} = 2,000$ $x_{34} = 15,000$ Z = \$80,200

 $(\mathbf{c})x_{16} = 52,000$

Z = \$52,000

It is much cheaper to rent all the space for the entire six month period in April and have excess or "surplus" space.

24. (a) x_{ij} = no. of students bused from district *i* to school *j*, where *i* = n, s, e, w, c and *j* = c,w,s

 $\begin{array}{l} \text{minimize } Z = 8x_{\text{nc}} + 11x_{\text{nw}} + 14x_{\text{ns}} + 12x_{\text{sc}} + \\ 9x_{\text{sw}} + 0x_{\text{ss}} + 9x_{\text{ec}} + 16x_{\text{ew}} + \\ 10x_{\text{es}} + 8x_{\text{wc}} + 0x_{\text{ww}} + 9x_{\text{ws}} + \\ 0x_{\text{cc}} + 8x_{\text{cw}} + 12x_{\text{cs}} \\ \text{subject to} \\ \\ x_{\text{nc}} + x_{\text{nw}} + x_{\text{ns}} = 700 \\ x_{\text{sc}} + x_{\text{sw}} + x_{\text{ss}} = 300 \\ x_{\text{ec}} + x_{\text{ew}} + x_{\text{es}} = 900 \\ x_{\text{wc}} + x_{\text{ww}} + x_{\text{ws}} = 600 \\ x_{\text{cc}} + x_{\text{cw}} + x_{\text{sc}} = 500 \\ x_{\text{nc}} + x_{\text{sc}} + x_{\text{ec}} + x_{\text{wc}} + x_{\text{cc}} \leq 1,200 \\ x_{\text{nw}} + x_{\text{sw}} + x_{\text{ew}} + x_{\text{ww}} + x_{\text{cw}} \leq 1,200 \\ x_{\text{ns}} + x_{\text{ss}} + x_{\text{es}} + x_{\text{ws}} + x_{\text{cs}} \leq 1,200 \end{array}$

 $x_{ij} \ge 0$

$$(\mathbf{b})x_{nc} = 700 x_{ss} = 300 x_{es} = 900 x_{ww} = 600 x_{cc} = 500 Z = 14,600$$

25. (a) Add the following 3 constraints to the original formulation:

$x_{ss} \leq$	150
$x_{ww} \leq$	300
$x_{\rm cc} \leq$	250
$x_{nc} =$	700
$x_{nw} =$	0
$x_{sw} =$	150
$x_{ss} =$	150
$x_{\rm es} =$	900
$x_{\rm wc} =$	250
$x_{ww} =$	300
$x_{\rm ws} = 3$	50
$x_{\rm cc} =$	250
$x_{cw} =$	250
Z =	20,400

(b) Change the 3 demand constraints in the (a) formulation from $\leq 1,200$ to = 1,000.

 $x_{nc} = 400$ $x_{nw} = 300$ $x_{sw} = 150$ $x_{ss} = 150$ $x_{ec} = 50$ $x_{ec} = 300$ $x_{wc} = 300$ $x_{cc} = 250$ $x_{cw} = 250$ Z = 21,200

26. (a) $x_1 = \text{no. of lb of oats}$ $x_2 = \text{no. of lb of corn}$ $x_3 = \text{no. of lb of soybean}$ $x_4 = \text{no. of lb of vitamin supplement}$

> minimize $Z = .50x_1 + 1.20x_2 + .60x_3 + 2.00x_4$ subject to

 $\begin{array}{c} x_{1} \leq 300 \\ x_{2} \leq 400 \\ x_{3} \leq 200 \\ x_{4} \leq 100 \\ x_{3}/(x_{1} + x_{2} + x_{3} + x_{4}) \geq .30 \\ x_{4}/(x_{1} + x_{2} + x_{3} + x_{4}) \geq .20 \\ x_{2}/x_{1} \leq 2/1 \\ x_{1} \leq x_{3} \\ x_{1} + x_{2} + x_{3} + x_{4} \geq 500 \\ x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \end{array}$

(b)
$$x_1 = 200$$

 $x_2 = 0$
 $x_3 = 200$
 $x_4 = 100.00$
 $Z = 420

27. (a) $x_1 = no.$ of day contacts by phone $x_2 = no.$ of day contacts in person $x_3 = no.$ of night contacts by phone $x_4 = no.$ of night contacts in person

> maximize $Z = 2x_1 + 4x_2 + 3x_3 + 7x_4$ subject to

 $x_2 + x_4 \le 300$ $6x_1 + 15x_2 \le 1,200$ $5x_3 + 12x_4 \le 2,400$ $x_1, x_2, x_3, x_4 \ge 0$

(b) $x_1 = 200$ $x_3 = 480$ Z = 1,840 **28.** (a) x_{ij} = dollar amount invested in alternative *i* in year *j*, where *i* = p (product research and development), m (manufacturing operations improvements), a (advertising and sales promotion) and *j* = 1,2,3,4 (denoting year): s_i = slack, or uninvested funds in year *j*

maximize $Z = s_4 + 1.2x_{a4} + 1.3x_{m3} + 1.5x_{p3}$ subject to $x_{a1} \ge 30,000$ $x_{m1} \ge 40,000$ $x_{p1} \ge 50,000$ $x_{a1} + x_{m1} + x_{p1} + s_1 = 500,000$ $x_{a2} + x_{m2} + x_{p2} + s_2 = s_1 + 1.2x_{a1}$ $x_{a3} + x_{m3} + x_{s3} = s_2 + 1.2x_{a2} + 1.3x_{m1}$ $x_{a4} + x_{s4} = s_3 + 1.2x_{a3} + 1.3x_{m2} + 1.5x_{p1}$ $x_{ij}, s_j \ge 0$

Note: Since it is assumed that any amount of funds can be invested in each alternative— i.e., there is no minimum investment required—and funds can always be invested in as short a period as one year yielding a positive return, it is apparent that the s_j variables for uninvested funds will be driven to zero in every period. Thus, these variables could be omitted from the model formulation for this problem.

$(\mathbf{b})x_{a1} = 410,000$	$x_{m1} = 40,000$
$x_{a2} = 492,000$	$x_{p1} = 50,000$
$x_{a3} = 642,400$	Z = \$1,015,056
$x_{a4} = 845,880$	

29. (a) $x_1 = no.$ of homeowner's policies $x_2 = no.$ of auto policies $x_3 = no.$ of life policies maximize $Z = 35x_1 + 20x_2 + 58x_3$ subject to $14x_1 + 12x_2 + 35x_3 \le 35,000$ $6x_1 + 3x_2 + 12x_3 \le 20,000$ $x_1, x_2, x_3 \ge 0$

(b) $x_1 = 2,500$ Z = \$87,500 **30.** (a) $x_1 = no.$ of issues of *Daily Life* $x_2 = no.$ of issues of *Agriculture Today* $x_3 = no.$ of issues of *Surf's Up* maximize $Z = 2.25x_1 + 4.00x_2 + 1.50x_3$ subject to $x_1 + x_2 + x_3 \ge 5,000$ $.01x_1 + .03x_2 + .02x_3 \le 120$ $.2x_1 + .5x_2 + .3x_3 \le 3,000$

 $.2x_1 + .5x_2 + .3x_3 \le 3,000$ $x_1 \le 3,000$ $x_2 \le 2,000$ $x_3 \le 6,000$ $x_1, x_2, x_3 \ge 0$

```
(\mathbf{b})x_1 = 3,000 
x_2 = 2,000 
x_3 = 1,500 
Z = $17,000
```

31. (a) $x_1 = no.$ of television commercials $x_2 = no.$ of newspaper ads $x_3 = no.$ of radio commercials

> minimize $Z = 15,000x_1 + 4,000x_2 + 6,000x_3$ subject to

 $\begin{aligned} x_3/x_2 &\geq 2/1 \\ 25,000x_1 + 10,000x_2 + 15,000x_3 &\geq 100,000 \\ (15,000x_1 + 3,000x_2 + 12,000x_3)/ \\ (10,000x_1 + 7,000x_2 + 3,000x_3) &\geq 2/1 \\ (15,000x_1 + 4,000x_2 + 9,000x_3)/ \\ (25,000x_1 + 10,000x_2 + 15,000x_3) &\geq .30 \\ x_2 &\leq 7 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$

(b) $x_2 = 2.5$ $x_3 = 5.0$ Z = 40,000

(c) This reformulation of the model would result in a fourth variable x_4 , with model parameters inserted accordingly. However, it would have no effect on the solution.

32. (a) x_{ij} = lbs. of coffee *i* used in blend *j* per week, where *i* = b (Brazilian), o (Mocha), c (Colombian), m (mild) and *j* = s (special), d (dark), r (regular)

> maximize $Z = 4.5x_{bs} + 3.75x_{os} + 3.60x_{cs}$ + $4.8x_{ms} + 3.25x_{bd} + 2.5x_{od} + 2.35x_{cd} + 3.55x_{md} + 1.75x_{br} + 1.00x_{or} + 0.85x_{cr} + 2.05x_{mr}$ subject to

$ \begin{array}{l} .6x_{cs}4x_{bs}4x_{os}4x_{ms} \ge 0 \\3x_{bs} + .7x_{os}3x_{cs}3x_{ms} \ge 0 \\ .4x_{bd}6x_{od}6x_{cd}6x_{md} \ge 0 \\1x_{bd}1x_{od}1x_{cd} + .9x_{md} \le 0 \\6x_{br}6x_{or}6x_{cr} + .4x_{mr} \le 0 \\ .7x_{br}3x_{or}3x_{cr}3x_{mr} \ge 0 \\ x_{bs} + x_{bd} + x_{br} \le 110 \\ x_{os} + x_{od} + x_{or} \le 70 \\ x_{cs} + x_{cd} + x_{cr} \le 80 \\ x_{ms} + x_{md} + x_{mr} \le 150 \\ x_{ij} \ge 0 \end{array} $ (b) $x_{os} = 60$ Special: $x_{os} + x_{cs} + x_{ms} = 200$ lbs. $x_{cs} = 80$ Dark: $x_{bd} + x_{or} + x_{mr} = 138$ lbs. $x_{ms} = 60$ Regular: $x_{br} + x_{or} + x_{mr} = 138$ lbs. $x_{bd} = 64.8 \\ x_{md} = 7.2 \\ x_{br} = 45.2 \\ x_{or} = 10 \\ x_{mr} = 82.8 \\ Z = $1,296 \end{array}$	34. (a) x_{ij} = production in month <i>i</i> to meet demand in month <i>j</i> , where $i = 1, 2,, 7$ and $j = 4, 5, 6$ and 7 y_j = overtime production in month <i>j</i> where j = 4, 5, 6, 7. Minimize $Z = 150x_{14} + 100x_{24} + 50x_{34} + 0x_{44}$ $+ 200x_{15} + 150x_{25} + 100x_{35} + 50x_{45} + 0x_{55} +$ $50x_{56} + 250x_{16} + 200x_{26} + 150x_{36} + 0x_{66} +$ $50x_{67} + 300x_{17} + 250x_{27} + 200x_{37} + 0x_{77} +$ $400y_4 + 400y_5 + 400y_6 + 400y_7$ Subject to $x_{14} + x_{24} + x_{34} + x_{44} + y_4 = 60 + x_{45}$ $x_{15} + x_{25} + x_{35} + x_{45} + x_{55} + y_5 = 85 + x_{56}$ $x_{16} + x_{26} + x_{36} + x_{56} + x_{66} + y_6 = 100 + x_{67}$ $x_{17} + x_{27} + x_{37} + x_{67} + x_{77} + y_7 = 120$ $x_{14} + x_{15} + x_{16} + x_{17} \le 30$ $x_{24} + x_{25} + x_{26} + x_{37} \le 30$ $x_{34} + x_{35} + x_{36} + x_{37} \le 30$ $x_{44} \le 40$ $x_{55} \le 60$							
33. (a) $x_1 = \$$ amount borrowed for six months in July $y_i = \$$ amount borrowed in month <i>i</i> (<i>i</i> = 1, 2,, 6) for one month $c_i = \$$ amount carried over from month <i>i</i> to <i>i</i> + 1 minimize $Z = .11x_1 + .05 \sum_{i=1}^{6} y_i$						$x_{77} \le y_4 \le y_5 \le y_6 \le y_7 \le y$	50 20 20 20 20 20	
<i>i</i> =1	(b)	- 10		- 5				
subject to	(D)X	$_{14} = 10$ $_{24} = 10$	y v	5 = 3 c = 10)			
July: $x_1 + y_1 + 20,000 - c_1 = 60,000$	x x	$_{44} = 40$	v	7 = 20)			
August: $c_1 + y_2 + 30,000 - c_2 = 60,000 + y_1$	x	35 = 20	Z	= \$3	1.500			
September: $c_2 + y_3 + 40,000 - c_3 = 80,000 + y_2$	x	55 = 60		1 -	,			
October: $c_3 + y_4 + 50,000 - c_4 = 30,000 + y_3$	x	66 = 90						
November $c_4 + y_5 + 80,000 - c_5 = 30,000 + y_4$	x	$_{17} = 20$						
December: $c_5 + y_6 + 100,000 - c_6 = 100,000 + y_5$	x	$_{27} = 30$						
End: $x_3 + y_6 \le c_6$	X	$_{77} = 50$						
$x_1, y_i, c_i \ge 0$								
(b) Solution			Produ	ictior	n for I	Month	<u>j</u>	
$x_1 = 70.000$	Month <i>i</i>	Capacity	4	5	6	7	Capacity	
$y_3 = 40,000$	1	30	10			20	30	
$y_4 = 20,000$	2	30	-			30	30	
$y_1 = y_2 = y_5 = y_6 = 0$	2	20	10	20		50	20	
$c_5 = 30,000$	3	50	10	20			50	
$c_6 = 110,000$	4	40	40				40	
Z = \$10,700	5	60		60			60	
	6	90			90		90	
(c) Changing the six-month interest rate to 9%	7	50				50	50	
results in the following new solution:		Overtime	_	5	10	20		
r = 000000								

 $\begin{aligned} x_1 &= 90,000 \\ y_3 &= 20,000 \\ c_1 &= 50,000 \\ c_2 &= 20,000 \\ c_5 &= 50,000 \\ c_6 &= 130,000 \\ Z &= \$9,100 \end{aligned}$

60 85 100

120

Demand

(c) $x_{34} = 20$ $x_{44} = 40$ $x_{25} = 5$ $x_{35} = 20$ $x_{55} = 60$ $x_{26} = 10$ $x_{66} = 90$ $x_{17} = 40$ $x_{27} = 25$ $x_{77} = 50$ $y_7 = 5$ Z = \$26,000

35. (a) x_{ij} = amount of ingredient *i* in wiener type *j*, where *i* = c, b, p, a represent chicken, beef, pork, and additives, and *j* = r,b,m represent regular, beef, and all-meat, respectively

maximize $Z = .7x_{cr} + .6x_{br} + .4x_{pr} + .85x_{ar}$ + 1.05 $x_{cb} + .95x_{bb} + .75x_{pb}$ + 1.20 $x_{ab} + 1.55x_{cm} + 1.45x_{bm}$ + 1.25 $x_{pm} + 1.70x_{am}$

subject to

 $\begin{aligned} x_{\rm cr} + x_{\rm cb} + x_{\rm cm} &\leq 200 \\ x_{\rm br} + x_{\rm bb} + x_{\rm bm} &\leq 300 \\ x_{\rm pr} + x_{\rm pb} + x_{\rm pm} &\leq 150 \\ x_{\rm ar} + x_{\rm ab} + x_{\rm am} &\leq 400 \\ .90x_{\rm br} + .90x_{\rm pr} - .10x_{\rm cr} - 10x_{\rm ar} &\leq 0 \\ .80x_{\rm cr} - .20x_{\rm br} - .20x_{\rm pr} - .20x_{\rm ar} &\geq 0 \\ .25x_{\rm bb} - .75x_{\rm cb} - .75x_{\rm pb} - .75x_{\rm ab} &\geq 0 \\ & *x_{\rm am} = 0 \\ .5x_{\rm bm} + .5x_{\rm pm} - .5x_{\rm cm} - .5x_{\rm am} &\leq 0 \\ & x_{ij} &\geq 0 \end{aligned}$

*Also feasible to delete x_{am} from the problem.

(b) $x_{cm} = 200$ $x_{bm} = 300$ $x_{pm} = 150$ $x_{mm} = 400$ Z = \$1,612.50

(c) This would require the addition of three constraints to the model,

 $\begin{aligned} x_{\rm cr} + x_{\rm br} + x_{\rm pr} + x_{\rm ar} &\geq 100\\ x_{\rm cb} + x_{\rm bb} + x_{\rm pb} + x_{\rm ab} &\geq 100\\ x_{\rm cm} + x_{\rm bm} + x_{\rm pm} + x_{\rm am} &\geq 100 \end{aligned}$

The new solution would be,

 $x_{cr} = 20$ $x_{pr} = 10$ $x_{ar} = 70$ $x_{bb} = 75$ $x_{pb} = 25$ $x_{cm} = 180$ $x_{bm} = 225$ $x_{pm} = 115$ $x_{am} = 330$ Z = \$1,477.50

36. (a) This is an *assignment* problem.

 x_1 = operator 1 to drill press x_2 = operator 1 to lathe $x_3 =$ operator 1 to grinder x_4 = operator 2 to drill press $x_5 =$ operator 2 to lathe x_6 = operator 2 to grinder x_7 = operator 3 to drill press $x_8 =$ operator 3 to lathe x_9 = operator 3 to grinder minimize $Z = 22x_1 + 18x_2 + 35x_3 + 41x_4$ $+30x_5 + 28x_6 + 25x_7 + 36x_8$ $+ 18x_9$ subject to $x_1 + x_2 + x_3 = 1$ $x_4 + x_5 + x_6 = 1$ $x_7 + x_8 + x_9 = 1$ $x_1 + x_4 + x_7 = 1$ $x_2 + x_5 + x_8 = 1$ $x_3 + x_6 + x_9 = 1$ $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \ge 0$

(b) $x_1 = 1$ $x_5 = 1$ $x_9 = 1$ Z = 70

(c) This would require the model to be reformulated with three new variables, x_{10} , x_{11} , x_{12} , representing Kelly's assignment to the press, lathe, and grinder. The model would be reformulated as,

Minimize
$$Z = 22x_1 + 18x_2 + 35x_3 + 41x_4 + 30x_5$$

+ $28x_6 + 25x_7 + 36x_8 + 18x_9 + 20x_{10} + 20x_{11} + 20x_{12}$

41. maximize $Z = .085x_1 + .100x_2 + .065x_3 + .130x_4$ subject to

$$\begin{array}{c} x_4 \leq 14,000 \\ x_2 \leq x_1 + x_3 + x_4 \\ x_2 + x_3 \geq 21,000 \\ -1.2x_1 + x_2 + x_3 - 1.2x_4 \geq 0 \\ x_1 + x_2 + x_3 + x_4 \leq 70,000 \\ x_1, x_2, x_3, x_4 \geq 0 \\ x_1 = 17,818.182 \\ x_2 = 35,000 \\ x_3 = 3,181.818 \\ x_4 = 14,000 \\ Z = \$7,041.36 \end{array}$$

42. (a) x_{ij} = barrels of component *i* used in gasoline grade *j* per day, where *i* = 1, 2, 3, 4 and *j* = R (regular), P (premium), L (low lead) Regular: $x_{1R} + x_{2R} + x_{3R} + x_{4R}$ Premium: $x_{1P} + x_{2P} + x_{3P} + x_{4P}$ Low lead: $x_{1L} + x_{2L} + x_{3L} + x_{4L}$

> maximize $Z = 9x_{1R} + 5x_{2R} + 0x_{3R} + 6x_{4R}$ + $9x_{1P} + 11x_{2P} + 6x_{3P} + 12x_{4P}$ + $x_{1L} + 3x_{2L} - 2x_{3L} + 4x_{4L}$

subject to

 $\begin{array}{c} x_{1\mathrm{R}} + x_{2\mathrm{R}} + x_{3\mathrm{R}} + x_{4\mathrm{R}} \geq 3,000 \\ x_{1\mathrm{P}} + x_{2\mathrm{P}} + x_{3\mathrm{P}} + x_{4\mathrm{P}} \geq 3,000 \\ x_{1\mathrm{L}} + x_{2\mathrm{L}} + x_{3\mathrm{L}} + x_{4\mathrm{L}} \geq 3,000 \\ x_{1\mathrm{R}} + x_{1\mathrm{P}} + x_{1\mathrm{L}} \leq 5,000 \\ x_{2\mathrm{R}} + x_{2\mathrm{P}} + x_{2\mathrm{L}} \leq 2,400 \\ x_{2\mathrm{R}} + x_{2\mathrm{P}} + x_{2\mathrm{L}} \leq 2,400 \\ x_{3\mathrm{R}} + x_{3\mathrm{P}} + x_{3\mathrm{L}} \leq 4,000 \\ x_{4\mathrm{R}} + x_{4\mathrm{P}} + x_{4\mathrm{L}} \leq 1,500 \\ .6x_{1\mathrm{R}} - .4x_{2\mathrm{R}} - .4x_{3\mathrm{R}} - .4x_{4\mathrm{R}} \geq 0 \\ -.2x_{1\mathrm{R}} + .8x_{2\mathrm{R}} - .2x_{3\mathrm{R}} - .2x_{4\mathrm{R}} \leq 0 \\ -.3x_{1\mathrm{R}} - .3x_{2\mathrm{R}} + .7x_{3\mathrm{R}} - .3x_{4\mathrm{R}} \geq 0 \\ -.4x_{1\mathrm{P}} - .4x_{2\mathrm{P}} + .6x_{3\mathrm{P}} - .4x_{4\mathrm{P}} \geq 0 \\ -.5x_{1\mathrm{L}} + .5x_{2\mathrm{L}} - .5x_{3\mathrm{L}} - .5x_{4\mathrm{L}} \leq 0 \\ .9x_{1\mathrm{L}} - .1x_{2\mathrm{L}} - .1x_{3\mathrm{L}} - .1x_{4\mathrm{L}} \geq 0 \\ & \text{all } x_{\mathrm{ij}} \geq 0 \end{array}$

$$(b) x_{1R} = 2,000 x_{2R} = 100 x_{3R} = 900 x_{2P} = 2,300 x_{3P} = 3,100 x_{4P} = 1,500 x_{1L} = 3,000 Z = $71,400$$

43. (a)First, all possible patterns that contain the desired lengths must be determined.

		Pattern						
Length (ft)	1	2	3	4	5	6		
7	3	2	2	1	0	0		
9	0	0	1	2	1	0		
10	0	1	0	0	1	2		
Total used (ft)	21	24	23	25	19	20		

 $x_i =$ no. of standard-length boards to cut using pattern *i*

minimize $Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6$ subject to

$$3x_1 + 2x_2 + 2x_3 + x_4 = 700$$

$$x_3 + 2x_4 + x_5 = 1,200$$

$$x_2 + x_5 + 2x_6 = 300$$

$$x_i \ge 0$$

$$\begin{aligned} \mathbf{(b)} x_2 &= 50 \\ x_4 &= 600 \\ x_6 &= 125 \\ Z &= 775 \end{aligned}$$

(c)

	Pattern						
Length (ft)	1	2	3	4	5	6	
7	3	2	2	1	0	0	
9	0	0	1	2	1	0	
10	0	1	0	0	1	2	
Trim loss (ft)	4	1	2	0	6	5	

 x_i = no. of standard-length boards to cut using pattern *i*; coefficients of objective function = trim loss using pattern *i*

minimize $Z = 4x_1 + x_2 + 2x_3 + 0x_4 + 6x_5 + 5x_6$ subject to

$$3x_1 + 2x_2 + 2x_3 + x_4 \ge 700$$

$$x_3 + 2x_4 + x_5 \ge 1,200$$

$$x_2 + x_5 + 2x_6 \ge 300$$

$$x_i \ge 0$$

$$x_2 = 300$$

$$x_4 = 600$$

Z = 300