Chapter Two: Linear Programming: Model Formulation and Graphical Solution

PROBLEM SUMMARY

1. Maximization
2. Maximization
3. Minimization
4. Sensitivity analysis (2-3)
5. Minimization
6. Maximization
7. Slack analysis (2-6)
8. Sensitivity analysis (2-6)
9. Maximization, graphical solution
10. Slack analysis (2-9)
11. Maximization, graphical solution
12. Minimization, graphical solution
13. Maximization, graphical solution
14. Sensitivity analysis (2-13)
15. Sensitivity analysis (2-13)
16. Maximization, graphical solution
17. Sensitivity analysis (2-16)
18. Maximization, graphical solution
19. Standard form
20. Maximization, graphical solution
21. Standard form
22. Maximization, graphical solution
23. Constraint analysis (2-22)
24. Minimization, graphical solution
25. Sensitivity analysis (2-24)
26. Sensitivity analysis (2-24)
27. Sensitivity analysis (2-24)
28. Minimization, graphical solution
29. Minimization, graphical solution
30. Sensitivity analysis (2-29)
31. Maximization, graphical solution
32. Maximization, graphical solution
33. Minimization, graphical solution
34. Maximization, graphical solution
35. Sensitivity analysis (2-34)
36. Minimization, graphical solution
37. Maximization, graphical solution
38. Maximization, graphical solution
39. Sensitivity analysis (2-38)
40. Maximization, graphical solution
41. Sensitivity analysis (2-40)
42. Maximization, graphical solution
43. Sensitivity analysis (2-42)
44. Minimization, graphical solution
45. Sensitivity analysis (2-44)
46. Maximization, graphical solution
47. Sensitivity analysis (2-46)
48. Maximization, graphical solution
49. Sensitivity analysis (2-48)
50. Multiple optimal solutions
51. Infeasible problem
52. Unbounded problem

PROBLEM SOLUTIONS

1.

2.(a) maximize $Z=6 x_{1}+4 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
10 x_{1}+10 x_{2} & \leq 100(\text { line } 1, \mathrm{hr}) \\
7 x_{1}+3 x_{2} & \leq 42(\text { line } 2, \mathrm{hr}) \\
x_{1}, x_{2} & \leq 0
\end{aligned}
$$

Wood

$$
\begin{aligned}
2 x_{1}+6 x_{2} & \leq 36 \mathrm{lb} \\
2(6)+6(3.2) & \leq 36 \\
12+19.2 & \leq 36 \\
31.2 & \leq 36 \\
36-31.2 & =4.8
\end{aligned}
$$

There is 4.8 lb of wood left unused.
8. The new objective function, $Z=400 x_{1}+500 x_{2}$, is parallel to the constraint for labor, which results in multiple optimal solutions. Points B $\left(x_{1}=30 / 7, x_{2}=32 / 7\right)$ and $C\left(x_{1}=6, x_{2}=3.2\right)$ are the alternate optimal solutions, each with a profit of $\$ 4,000$.
9.(a) maximize $Z=x_{1}+5 x_{2}$ (profit, $\$$)
subject to

$$
\begin{aligned}
5 x_{1}+5 x_{2} & \leq 25(\text { flour, } \mathrm{lb}) \\
2 x_{1}+4 x_{2} & \leq 16(\text { sugar, } \mathrm{lb}) \\
x_{1} & \leq 5 \text { (demand for cakes) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b)

10. In order to solve this problem, you must substitute the optimal solution into the resource constraints for flour and sugar and determine how much of each resource is left over.

Flour

$$
\begin{aligned}
5 x_{1}+5 x_{2} & \leq 25 \mathrm{lb} \\
5(0)+5(4) & \leq 25 \\
20 & \leq 25 \\
25-20 & =5
\end{aligned}
$$

There are 5 lb of flour left unused.

Sugar

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \leq 16 \\
2(0)+4(4) & \leq 16 \\
16 & \leq 16
\end{aligned}
$$

There is no sugar left unused.
11.

12.(a) minimize $Z=80 x_{1}+50 x_{2}($ cost, $\$)$ subject to

$$
\begin{aligned}
3 x_{1}+x_{2} & \geq 6 \text { (antibiotic } 1, \text { units) } \\
x_{1}+x_{2} & \geq 4 \text { (antibiotic } 2, \text { units) } \\
2 x_{1}+6 x_{2} & \geq 12 \text { (antibiotic } 3, \text { units) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b)

13.(a) maximize $Z=300 x_{1}+400 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
3 x_{1}+2 x_{2} & \leq 18(\text { gold, oz }) \\
2 x_{1}+4 x_{2} & \leq 20 \text { (platinum, oz) } \\
x_{2} & \leq 4 \text { (demand, bracelets) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The extreme points to evaluate are now A, B^{\prime}, and C^{\prime}.

$$
\begin{array}{rlrl}
A: & x_{1} & =0 \\
& x_{2} & =30 \\
Z & =1,200 \\
*^{\prime}: & & x_{1} & =15.8 \\
x_{2} & =20.5 \\
Z & =1,610 \\
C^{\prime}: \quad & & x_{1} & =24 \\
& x_{2} & =0 \\
& Z & =1,200
\end{array}
$$

Point B^{\prime} is optimal
18.

19. maximize $Z=1.5 x_{1}+x_{2}+0 s_{1}+0 s_{3}$ subject to:

$$
\begin{aligned}
& x_{1}+s_{2}=4 \\
& x_{2}+s_{2}=6 \\
& x_{1}+x_{2}+s_{3}=5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

A: $s_{1}=4, s_{2}=1, s_{3}=0$
B: $s_{1}=0, s_{2}=5, s_{3}=0$
C: $s_{1}=0, s_{2}=6, s_{3}=1$
20.

21. maximize $Z=5 x_{1}+8 x_{2}+0 s_{1}+0 s_{3}+0 s_{4}$ subject to:

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+s_{1}=50 \\
& 2 x_{1}+4 x_{2}+s_{2}=40 \\
& x_{1}+s_{3}=8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

A: $s_{1}=0, s_{2}=0, s_{3}=8, s_{4}=0$
B: $s_{1}=0, s_{2}=3.2, s_{3}=0, s_{4}=4.8$
C: $s_{1}=26, s_{2}=24, s_{3}=0, s_{4}=10$
22.

23. It changes the optimal solution to point A ($x_{1}=8, x_{2}=6, Z=112$), and the constraint, $x_{1}+x_{2} \leq 15$, is no longer part of the solution space boundary.
24.(a) Minimize $Z=64 x_{1}+42 x_{2}$ (labor cost, $\$$) subject to

$$
\begin{gathered}
16 x_{1}+12 x_{2} \geq 450 \text { (claims) } \\
x_{1}+x_{2} \leq 40 \text { (workstations) } \\
0.5 x_{1}+1.4 x_{2} \leq 25 \text { (defective claims) } \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

25. Changing the pay for a full-time claims processor from $\$ 64$ to $\$ 54$ will change the solution to point A in the graphical solution where $x_{1}=28.125$ and $x_{2}=0$, i.e., there will be no part-time operators. Changing the pay for a part-time operator from $\$ 42$ to $\$ 36$ has no effect on the number of full-time and part-time operators hired, although the total cost will be reduced to $\$ 1,671.95$
26. Eliminating the constraint for defective claims would result in a new solution, $x_{1}=0$ and $x_{2}=$ 37.5 , where only part-time operators would be hired.
27. The solution becomes infeasible; there are not enough workstations to handle the increase in the volume of claims.

29.

30. The problem becomes infeasible.
31.

32.

47. A new constraint is added to the model in

$$
\frac{x_{1}}{x_{2}} \geq 1.5
$$

The solution is, $x_{1}=160, x_{2}=106.67, Z=\$ 568$

48.(a) maximize $Z=400 x_{1}+300 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 50 \text { (available land, acres) } \\
10 x_{1}+3 x_{2} & \leq 300 \text { (labor, hr) } \\
8 x_{1}+20 x_{2} & \leq 800 \text { (fertilizer, tons) } \\
x_{1} & \leq 26 \text { (shipping space, acres) } \\
x_{2} & \leq 37 \text { (shipping space, acres) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

(b)

49. The feasible solution space changes if the fertilizer constraint changes to $20 x_{1}+20 x_{2} \leq$ 800 tons. The new solution space is $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Two of the constraints now have no effect.

The new optimal solution is point C^{\prime} :

$$
\begin{array}{llll}
A^{\prime}: & x_{1}=0 & * C^{\prime}: & x_{1}=26 \\
& x_{2}=37 & & x_{2}=14 \\
& Z=11,100 & & Z=14,600 \\
B^{\prime}: & x_{1}=3 & D^{\prime}: & x_{1}=26 \\
& x_{2}=37 & & x_{2}=0 \\
& Z=12,300 & & Z=10,400
\end{array}
$$

50.

Multiple optimal solutions; A and B alternate optimal
51.

CASE SOLUTION:

METROPOLITAN POLICE PATROL

The linear programming model for this case problem is
minimize $Z=x / 60+y / 45$
subject to

$$
\begin{aligned}
2 x+2 y & \geq 5 \\
2 x+2 y & \leq 12 \\
y & \geq 1.5 x \\
x, y & \geq 0
\end{aligned}
$$

The objective function coefficients are determined by dividing the distance traveled, ie., $x / 3$, by the travel speed, ie., 20 mph . Thus, the x coefficient is $x / 3 \div 20$, or $x / 60$. In the first two constraints, $2 x+2 y$ represents the formula

