Chapter One: Management Science

PROBLEM SUMMARY

1. Total cost, revenue, profit, and break-even
2. Total cost, revenue, profit, and break-even
3. Total cost, revenue, profit, and break-even
4. Break-even volume
5. Graphical analysis (1-2)
6. Graphical analysis (1-4)
7. Break-even sales volume
8. Break-even volume as a percentage of capacity (1-2)
9. Break-even volume as a percentage of capacity (1-3)
10. Break-even volume as a percentage of capacity (1-4)
11. Effect of price change (1-2)
12. Effect of price change (1-4)
13. Effect of variable cost change (1-12)
14. Effect of fixed cost change (1-13)
15. Break-even analysis
16. Effect of fixed cost change (1-7)
17. Effect of variable cost change (1-7)
18. Break-even analysis
19. Break-even analysis
20. Break-even analysis
21. Linear programming
22. Linear programming
23. Linear programming
24. Forecasting/statistics

PROBLEM SOLUTIONS

1a. $v=300, c_{\mathrm{f}}=\$ 8,000, c_{\mathrm{v}}=\$ 65$ per table, $p=\$ 180$; $\mathrm{TC}=c_{f}+v c_{\mathrm{v}}=\$ 8,000+(300)(65)=\$ 27,500 ;$ $\mathrm{TR}=v p=(300)(180)=\$ 54,000 ; Z=\$ 54,000-$ $27,500=\$ 26,500$ per month
b. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{8,000}{180-65}=69.56$ tables per month

2a. $v=12,000, c_{\mathrm{f}}=\$ 60,000, c_{\mathrm{v}}=\$ 9, p=\$ 25 ; \mathrm{TC}=$ $c_{\mathrm{f}}+v c_{\mathrm{v}}=60,000+(12,000)(9)=\$ 168,000 ; \mathrm{TR}=$ $v p=(12,000)(\$ 25)=\$ 300,000 ; Z=\$ 300,000-$ $168,000=\$ 132,000$ per year
b. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{60,000}{25-9}=3,750$ tires per year

3a. $v=18,000, c_{\mathrm{f}}=\$ 21,000, c_{\mathrm{v}}=\$.45, p=\$ 1.30$; $\mathrm{TC}=c_{\mathrm{f}}+v c_{\mathrm{v}}=\$ 21,000+(18,000)(.45)=\$ 29,100 ;$ $\mathrm{TR}=v p=(18,000)(1.30)=\$ 23,400 ; Z=\$ 23,400-$ $29,100=-\$ 5,700$ (loss)
b. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{21,000}{1.30-.45}=24,705.88$ yd per month
4. $c_{\mathrm{f}}=\$ 25,000, p=\$.40, c_{\mathrm{v}}=\$.15, v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=$

$$
\frac{25,000}{.40-.15}=100,000 \mathrm{lb} \text { per month }
$$

5.

6.

7. $v=\frac{c_{f}}{p-c_{v}}=\frac{\$ 25,000}{30-10}=1,250$ dolls
8. Break-even volume as percentage of capacity $=\frac{v}{k}=$ $\frac{3,750}{8,000}=.469=46.9 \%$
9. Break-even volume as percentage of capacity $=\frac{v}{k}=$ $\frac{24,705.88}{25,000}=.988=98.8 \%$
10. Break-even volume as percentage of capacity $=\frac{v}{k}=$ $\frac{100,000}{120,000}=.833=83.3 \%$
11. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{60,000}{31-9}=2,727.3$ tires per year; it reduces the break-even volume from 3,750 tires to $2,727.3$ tires per year.
12. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{25,000}{.60-.15}=55,555.55 \mathrm{lb}$ per month; it reduces the break-even volume from $100,000 \mathrm{lb}$ per month to $55,555.55 \mathrm{lb}$.
13. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{25,000}{.60-.22}=65,789.47 \mathrm{lb}$ per month; it increases the break-even volume from $55,555.55 \mathrm{lb}$ per month to $65,789.47 \mathrm{lb}$ per month.
14. $v=\frac{c_{\mathrm{f}}}{p-c_{\mathrm{v}}}=\frac{39,000}{.60-.22}=102,631.57 \mathrm{lb}$ per month; it increases the break-even volume from $65,789.47 \mathrm{lb}$ per month to $102,631.57 \mathrm{lb}$ per month.
15. Initial profit: $Z=v p-c_{\mathrm{f}}-v c_{v}=(9,000)(.75)-$ $4,000-(9,000)(.21)=6,750-4,000-1,890=$ $\$ 860$ per month; increase in price: $Z=v p-c_{\mathrm{f}}$ $v c_{\mathrm{v}}=(5,700)(.95)-4,000-(5,700)(.21)=5,415-$ $4,000-1,197=\$ 218$ per month; the dairy should not raise its price.
16. $v=\frac{c_{f}}{p-c_{v}}=\frac{35,000}{30-10}=1,750$

The increase in fixed cost from $\$ 25,000$ to $\$ 35,000$ will increase the break-even point from 1,250 to 1,750 or 500 dolls, thus, he should not spend the extra $\$ 10,000$ for advertising.
17. Original break-even point (from problem)

$$
7=1,250
$$

New break-even point:

$$
v=\frac{c_{f}}{p-c_{v}}=\frac{17,000}{30-14}=1062.5
$$

18. a) $v=\frac{c_{f}}{p-c_{v}}=\frac{\$ 27,000}{8.95-3.75}=5,192.30$ pizzas
b) $\frac{5,192.3}{20}=259.6$ days
c) Revenue for the first 30 days $=30\left(p v-v c_{v}\right)$

$$
\begin{aligned}
= & 30[(8.95)(20)- \\
& (20)(3.75)] \\
= & \$ 3,120
\end{aligned}
$$

$\$ 27,000-3,120=\$ 23,880$, portion of fixed cost not recouped after 30 days.
New $v=\frac{c_{f}}{p-c_{v}}=\frac{\$ 23,880}{7.95-3.75}=5,685.7$ pizzas
Total break-even volume $=600+5,685.7=$ 6,285.7 pizzas

Total time to break-even $=30+\frac{5,685.7}{20}$

$$
=314.3 \text { days }
$$

19. a) Cost of Regular plan $=\$ 55+(.33)(50$ minutes $)$

$$
=\$ 71.50
$$

Cost of Executive plan $=\$ 75+(.25)(20$ minutes)

$$
=\$ 80
$$

Select regular plan.
b) $55+(x-70)(.33)=75+(x-100)(.25)$

$$
\begin{aligned}
31.9+.33 x & =50+.25 x \\
x & =226.25 \text { minutes per month }
\end{aligned}
$$

20. a) $14,000=\frac{7,500}{p-.35}$
$p=\$ 0.89$ to break even
b) If the team did not perform as well as expected the crowds could be smaller; bad weather could reduce crowds and/or affect what fans eat at the game; the price she charges could affect demand.
c) This will be an objective answer, but $\$ 1.25$ seems to be a reasonable price.

$$
\begin{aligned}
Z & =v p-c_{f}-v c_{v} \\
Z & =(14,000)(1.25)-7,500-(14,000)(0.35) \\
& =17,500-12,400 \\
& =\$ 5,100
\end{aligned}
$$

21. There are two possible answers, or solution points:
$x=25, y=0$ or $x=0, y=50$
Substituting these values in the objective function:
$Z=15(25)+10(0)=375$
$Z=15(0)+10(50)=500$
