Chapter 1 Introduction

- Management Science
- Problem Solving and Decision Making
- Quantitative Analysis
- Models of Cost, Revenue, and Profit
- The Management Scientist

Background Needed in This Course

- Mathematical prerequisite: algebra
- Some introductory knowledge of probability and statistics
- Key to success in the course:
 - · Smooth translation between business language (common sense) and mathematical language.
 - Readings before each class
 - · Practices and exercises beyond homeworks + cases

Slide 1

Management Science

- Management science is a quantitative approach to decision making based on the scientific method of problem solving.
- A synonymous term is <u>operations research</u> or decision science.
- It had its early roots in World War II and is flourishing in business and industry with the aid of computers in general and the microcomputer in particular.
- Some of the primary <u>applications areas</u> of management science are forecasting, production scheduling, inventory control, capital budgeting, advertising, marketing research, and transportation.

Slide 3

Problem Solving and Decision Making

- 7 Steps of Problem Solving
 - (First 5 steps are the process of decision making)
 - Identify and define the problem.
 - · Determine the set of alternative solutions.
 - Determine the criteria for evaluating the alternatives.
 - Evaluate the alternatives.
 - Choose an alternative.
 - Implement the chosen alternative.
 - Evaluate the results.

Slide 4

Slide 2

Quantitative Analysis and Decision Making

- Potential Reasons for a Quantitative Analysis Approach to Decision Making
 - The problem is complex.
 - The problem is very important.
 - The problem is new.
 - The problem is repetitive.

Quantitative Analysis

- Quantitative Analysis Process
 - Model Development
 - Data Preparation
 - Model Solution
 - Report Generation

Slide 5

Slide 6

Model Development

- <u>Models</u> are representations of real objects or situations.
- Three <u>forms of models</u> are iconic, analog, and mathematical.
 - <u>Iconic models</u> are physical replicas (scalar representations) of real objects.
 - <u>Analog models</u> are physical in form, but do not physically resemble the object being modeled.
 - <u>Mathematical models</u> represent real world problems through a system of mathematical formulas and expressions based on key assumptions, estimates, or statistical analyses.

Slide 7

Mathematical Models

- Cost/benefit considerations must be made in selecting an appropriate mathematical model.
- Frequently a less complicated (and perhaps less precise) model is more appropriate than a more complex and accurate one due to cost and ease of solution considerations.
- The **purpose**, or **value**, of any **model** is that it enables us to make inferences about the real situation by studying and analyzing the model.
 - more efficient; less time required.
 - less expensive.

Slide 8

Mathematical Models

- Mathematical models relate <u>decision variables</u> (or controllable inputs) with fixed or variable parameters (or uncontrollable inputs).
- Frequently mathematical models seek to maximize or minimize some <u>objective function</u> subject to constraints.
- If any of the uncontrollable inputs is subject to variation the model is said to be <u>stochastic</u>; otherwise the model is said to be deterministic.
- Generally, stochastic models are more difficult to analyze.
- The values of the decision variables that provide the mathematically-best output are referred to as the <u>optimal solution</u> for the model.

Slide 9

Example: Iron Works, Inc.

Iron Works, Inc. (IWI) manufactures two products made from steel and just received this month's allocation of *b* pounds of steel. It takes a_1 pounds of steel to make a unit of product 1 and it takes a_2 pounds of steel to make a unit of product 2.

Let x_1 and x_2 denote this month's production level of product 1 and product 2, respectively. Denote by p_1 and p_2 the unit profits for products 1 and 2, respectively.

The manufacturer has a contract calling for at least m units of product 1 this month. The firm's facilities are such that at most u units of product 2 may be produced monthly.

Slide 10

Example: Iron Works, Inc.

Mathematical Model

The total monthly profit =

- (profit per unit of product 1)
- x (monthly production of product 1)
- + (profit per unit of product 2)
- x (monthly production of product 2)
- $= p_1 x_1 + p_2 x_2$
- We want to maximize total monthly profit: Max $p_1x_1 + p_2x_2$

Slide 11

• Question:

The optimal solution to the current model is $x_1 = 60$ and $x_2 = 626 2/3$ [after using the Management Scientist]. If the product were engines, explain why this is not a true optimal solution for the "real-life" problem.

• Answer:

One cannot produce and sell 2/3 of an engine. Thus the problem is further restricted by the fact that both x_1 and x_2 must be integers. They could remain fractions if it is assumed these fractions are work in progress to be completed the next month.

Slide 16

13 EXIT PROGRAM

Slide 18

