Chapter 1
 Introduction

- Management Science
- Problem Solving and Decision Making
- Quantitative Analysis
- Models of Cost, Revenue, and Profit
- The Management Scientist

Background Needed in This Course

- Mathematical prerequisite: algebra
- Some introductory knowledge of probability and statistics
- Key to success in the course:
- Smooth translation between business language (common sense) and mathematical language.
- Readings before each class
- Practices and exercises beyond homeworks + cases

Management Science

- Management science is a quantitative approach to decision making based on the scientific method of problem solving.
- A synonymous term is operations research or decision science.
- It had its early roots in World War II and is flourishing in business and industry with the aid of computers in general and the microcomputer in particular.
- Some of the primary applications areas of management science are forecasting, production scheduling, inventory control, capital budgeting, advertising, marketing research, and transportation.

Problem Solving and Decision Making

- 7 Steps of Problem Solving (First 5 steps are the process of decision making)
- Identify and define the problem.
- Determine the set of alternative solutions.
- Determine the criteria for evaluating the alternatives.
- Evaluate the alternatives.
- Choose an alternative.
- Implement the chosen alternative.
- Evaluate the results.

Quantitative Analysis and Decision Making

- Potential Reasons for a Quantitative Analysis Approach to Decision Making
- The problem is complex.
- The problem is very important.
- The problem is new.
- The problem is repetitive.

Quantitative Analysis

- Quantitative Analysis Process
- Model Development
- Data Preparation
- Model Solution
- Report Generation

Model Development

- Models are representations of real objects or situations.
- Three forms of models are iconic, analog, and mathematical.
- Iconic models are physical replicas (scalar representations) of real objects.
- Analog models are physical in form, but do not physically resemble the object being modeled.
- Mathematical models represent real world problems through a system of mathematical formulas and expressions based on key assumptions, estimates, or statistical analyses.

Mathematical Models

- Cost/benefit considerations must be made in selecting an appropriate mathematical model.
- Frequently a less complicated (and perhaps less precise) model is more appropriate than a more complex and accurate one due to cost and ease of solution considerations.
- The purpose, or value, of any model is that it enables us to make inferences about the real situation by studying and analyzing the model.
- more efficient; less time required.
- less expensive.

Mathematical Models

- Mathematical models relate decision variables (or controllable inputs) with fixed or variable parameters (or uncontrollable inputs).
- Frequently mathematical models seek to maximize or minimize some objective function subject to constraints
- If any of the uncontrollable inputs is subject to variation the model is said to be stochastic; otherwise the model is said to be deterministic.
- Generally, stochastic models are more difficult to analyze.
- The values of the decision variables that provide the mathematically-best output are referred to as the optimal solution for the model.

Example: Iron Works, Inc.

Iron Works, Inc. (IWI) manufactures two products made from steel and just received this month's allocation of b pounds of steel. It takes a_{1} pounds of steel to make a unit of product 1 and it takes a_{2} pounds of steel to make a unit of product 2 .

Let x_{1} and x_{2} denote this month's production level of product 1 and product 2 , respectively. Denote by p_{1} and p_{2} the unit profits for products 1 and 2 , respectively.

The manufacturer has a contract calling for at least m units of product 1 this month. The firm's facilities are such that at most u units of product 2 may be produced monthly.

Example: Iron Works, Inc.

- Mathematical Model
- The total monthly profit =
(profit per unit of product 1)
x (monthly production of product 1)
+ (profit per unit of product 2)
x (monthly production of product 2)

$$
=p_{1} x_{1}+p_{2} x_{2}
$$

We want to maximize total monthly profit: $\operatorname{Max} p_{1} x_{1}+p_{2} x_{2}$

Example: Iron Works, Inc.

- Mathematical Model (continued)
- The total amount of steel used during monthly production $=$
(steel required per unit of product 1)
x (monthly production of product 1)
+ (steel required per unit of product 2)
x (monthly production of product 2)
$=a_{1} x_{1}+a_{2} x_{2}$
This quantity must be less than or equal to the allocated b pounds of steel:

$$
a_{1} x_{1}+a_{2} x_{2} \leq b
$$

Example: Iron Works, Inc.

- Mathematical Model (continued)
- The monthly production level of product 1 must be greater than or equal to m :

$$
x_{1} \geq m
$$

- The monthly production level of product 2 must be less than or equal to u :

$$
x_{2} \leq u
$$

- However, the production level for product 2 cannot be negative:

$$
x_{2} \geq 0
$$

Example: Iron Works, Inc.

- Mathematical Model Summary
$\operatorname{Max} p_{1} x_{1}+p_{2} x_{2}$
s.t. $\quad a_{1} x_{1}+a_{2} x_{2} \leq b$
$x_{1} \geq m$
$x_{2} \leq u$
$x_{2} \geq 0$
- Question:

The optimal solution to the current model is $x_{1}=60$ and $x_{2}=6262 / 3$ [after using the Management Scientist]. If the product were engines, explain why this is not a true optimal solution for the "real-life" problem.

- Answer:

One cannot produce and sell $2 / 3$ of an engine. Thus the problem is further restricted by the fact that both x_{1} and x_{2} must be integers. They could remain fractions if it is assumed these fractions are work in progress to be completed the next month.

The Management Scientist

- Major Elements
- Top Level Menu
- Problem Selection Menu
- Data Input
- Problem Disposition Menu
- Solution and Output Information
- Data Editing
- Saving, Retrieving, and/or Deleting Problems

The Management Scientist

- Top Level Menu

THE MANAGEMENT SCIENTIST Top Level Menu		
1 Linear Programming	7 PERT/CPM	
2 Transportation	8 Inventory Models	
3 Assignment	9 Waiting Lines	
4 Integer Linear Programming	10 Decision Analysis	
5 Shortest Route	11 Forecasting	
6 Minimal Spanning Tree	12 Markov Processes	
13 EXIT PROGRAM		

The Management Scientist

PROBLEM DISPOSITION MENU
Choices
1 Solve the Problem
2 Save the Problem
3 Display/Edit the Problem
4 Return to the Problem Selection Menu

Breakeven Analysis

Fixed costs $\left(c_{f}\right)$ - costs that remain constant regardless of number of units produced
Variable cost $\left(c_{v}\right)$ - unit cost of product
Total variable cost ($\mathrm{v} \mathrm{c}_{\mathrm{v}}$) - function of volume (v) and variable per-unit cost
Total cost (TC) - total fixed cost plus total variable cost
Profit(Z) - difference between total revenue vp ($p=$ price) and total cost: $\mathrm{Z}=\mathrm{vp}-\mathrm{c}_{\mathrm{f}}-\mathrm{vc} \mathrm{c}_{\mathrm{v}}$
The break-even point is that volume at which total revenue equals total cost and profit is zero:

$$
\mathrm{V}=\mathrm{c}_{\mathrm{f}} /\left(\mathrm{p}-\mathrm{c}_{\mathrm{v}}\right)
$$

The End of Chapter 1

Self Quiz

- Algebra Basics: Solve for x_{1} and x_{2} in the following equations

$$
\begin{aligned}
& 4 x_{1}-x_{2}=12 \\
& x_{1}+x_{2}=4
\end{aligned}
$$

- Statistics Basics: Suppose z is a standard normal variable (with mean 0 and standard deviation of 1).
- What is the probability that z is less than $\mathrm{z}_{0}=1$?
- What is the probability that z is greater than $\mathrm{z}_{0}=1$?

Self Quiz

The price of a particular stock listed in NYSE is fluctuating up and down from one transaction to the next according to the following probability distribution.
Price

