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A
s more fixed-income market partic-
ipants turn to the corporate bond
market, there has been an increase in
demand for a wide variety of credit-

based financial products from corporations and
fund managers. An understanding of the dynam-
ics of credit spreads is thus important for prac-
titioners and academicians alike. Modern asset
pricing theory allows us to value and hedge a
wide array of claims on credit spreads when we
know the dynamics of the underlying state vari-
ables. Unfortunately, the theory does not pro-
vide guidance on choosing a correct specification
for price changes of a financial asset. 

This article uses a non-parametric
approach proposed by Stanton [1997] to exam-
ine changes in credit spreads and identify the
properties of possible candidate processes. The
continuous-time financial theory has devel-
oped a variety of tools to value corporate
bonds and associated credit derivatives, but
specification of an appropriate model is for the
most part an unanswered question. 

In the finance literature, most models
written to capture the dynamics of the spreads
on the underlying state variables are continu-
ous-time diffusions based on the specification: 

(1)

where µ and σ, the drift and diffusion of the pro-
cess, are functions only of the contemporaneous
value of Xt, and Zt is a standard Brownian
motion. 

The main differences in models are in
their assumed functional forms for µ and σ.
The choice of the parametric drift and diffu-
sion families is often arbitrary. One approach
is to choose among possible spread processes
according to how well they price specific liq-
uid derivative securities. This is often a diffi-
cult task in practice, and when  feasible tends
to vary with the specific derivatives used.
Moreover, the market for credit derivatives is
illiquid, with wide spreads between bid and ask
prices. It is therefore desirable to be able to test
a specification without making use of obser-
vations on a collection of derivatives. 

The non-parametric procedure proposed
by Stanton [1997] allows an estimation of
drift and diffusion functions from data
observed at discrete intervals. It makes no
parametric assumptions about the drift or the
diffusion function. Using the non-parametric
procedure, we examine Moody’s Aaa bond
index and Bbb bond index yield spreads for
the sample period February 1977 through
April 2001. 

We find that the drift function is linear
for Aaa index spread changes, but the the Bbb
index spread over the benchmark bond shows
evidence of substantial non-linearity. For nar-
row and medium spreads, there is virtually no
mean reversion, but as spreads widen, the
degree of mean reversion increases dramatically.
Finally, we regress the non-parametric esti-
mates of drift and standard deviation on con-
temporaneous spread levels to investigate the
effectiveness of parametric specifications.

dX X dt X dZt t t t= ( ) + ( )µ σ
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I. LITERATURE OVERVIEW 

Given the possibility of default, risk-averse investors
must be compensated for holding corporate bonds instead
of otherwise identical default-free securities. The credit
spread, defined as the yield differential between seasoned
corporate bond indexes and constant-maturity Trea-
suries, can be used to gauge the premium in aggregate
that investors demand for holding securities subject to
default risk.

The index represents the average of the spreads of
the constituent bonds. The yield on a constituent cor-
porate bond depends on the risk-free interest rate (or the
term structure), the probability of default of a bond, and
the recovery rate in the event of default. 

There are two basic approaches to modeling cor-
porate default risks. One approach, pioneered by Black
and Scholes [1973] and Merton [1974] and extended by
Black and Cox [1976], Longstaff and Schwartz [1995],
and others, explicitly models the evolution of firm value
observable by investors. This approach is commonly
referred to as the “structural approach.” It has been
applied in Geske [1977], Smith and Warner [1979],
Cooper and Mello [1991], Hull and White [1992],
Abken [1993], Leland and Toft [1997], and Zhou [1998],
among others. 

In structural models, the firm value is assumed to fol-
low a diffusion process. A firm defaults on its debt if the
firm value falls below the nominal value of outstanding
debt. Credit spread dynamics in these models depend on
the underlying diffusion specification. For example, con-
sider the classical approach of Merton [1974]. The value
of a firm V is modeled as a geometric Brownian motion,
which under the martingale measure has the form:

(2) 

and the interest rate is assumed constant. If the firm is
financed by zero-coupon debt with a face value D matur-
ing at time t, at maturity the bondholders receive the
amount:

(3)

which is the payoff of a risk-free zero-coupon bond minus
a put option. Therefore the credit spread itself must fol-
low a diffusion process. 

min , max ,V D D D VT T( ) = − −( ) 0

dV rV dt V dZt t t t= + σ

In these models, a firm cannot default unexpectedly.
If a firm cannot default unexpectedly, and if it is not cur-
rently in financial distress, its probability of defaulting in
the short term is zero, and short-term credit spreads should
be zero. This implication is strongly rejected by the data.

To address this problem, Zhou [1998] proposes
jump diffusion to model spread changes. A bond index
is a weighted average of component bond yields, how-
ever, and is therefore diversified. Hence the credit spread
dynamics of an index may be appropriately represented
by a diffusion process. 

A second approach to modeling risky debt is adopted
by Jarrow and Turnbull [1995], Jarrow, Lando, and Turnbull
[1997], Madan and Unal [1998], and Duffie and Singleton
[1999]. They do not consider the relation between default
and firm value in an explicit manner. This approach is called
the “reduced-form approach.” Contrary to the structural
approach, the reduced-form approach treats default as an
unpredictable event involving a sudden loss in market value.

Duffie and Singleton [1999] show that a claim on a
defaultable bond may be priced as if it were default-free
by replacing the usual short-term interest rate process r with
the default-adjusted short rate process R = r + hL. That
is, the initial market value of the defaultable claim to X is:

(4)

where the expectation is taken under the risk-neutral
measure. The authors show that the default-adjusted short
rate can be modeled as the sum of two or more diffusion
processes. The corresponding spread dynamics are driven
by the underlying specifications. 

Empirical research by Duffie and Singleton [1997],
Duffee [1998], and Duffie, Pedersen, and Singleton [2000]
has used variants of Equation (1) in a multidimensional
setting to examine default characteristics of risky bonds.
The specification of an appropriate model, however, is an
open question.

II. NON-PARAMETRIC METHODOLOGY

In valuing contingent claims it is convenient to rep-
resent the underlying state variables as a continuous-time
diffusion process satisfying the time-homogeneous stochas-
tic differential Equation (1). The usual approach is first to
specify parametric forms for the drift and diffusion func-
tions, and then to estimate the values of the parameters. 
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Given functions µ and σ, the transition density from
value x at time t to value y at some later time s, p(s, yt, x)
must satisfy the Kolmogorov forward and backward equa-
tions (see Oksendal [1985]). In principle, for a given param-
eterization of µ and σ, we use maximum-likelihood to
estimate the model’s parameters. 

A potentially serious problem with any parametric
model, particularly when there is no economic reason why
we should prefer one functional form over another, is mis-
specification. Even a model that fits credit spread movements
well in-sample does not necessarily price securities well. To
avoid misspecification, more recent researchers have used
nonparametric estimation techniques in order to avoid hav-
ing to specify functional forms for µ and σ.

Stanton [1997] avoids imposing any parametric
restrictions on either µ or σ. He uses a Taylor series
approximation to show that the conditional drift and dif-
fusion are given by (for a second-order approximation):

(5)

(6)

To implement the procedure, we need a means of non-
parametrically estimating the conditional expectations in
Equations (5) and (6). We use a kernel estimation procedure
for doing this. Kernel estimation is a non-parametric method
for estimating the joint density of a set of random variables.
Given m dimensional vectors z1, z2, ..., m from an unknown
density f(z), a kernel estimator of this density is

(7)

where h is the window width or smoothing parameter,
and K(•) is a suitable kernel function. The density at any
point is estimated as the average of densities centered at
the actual data points. The farther away a data point is from
the estimated density, the less it contributes to the esti-
mated density. Hence the estimated density is highest
near the high concentration of data points and lowest
when observations are sparse. The kernel density estima-
tor is similar to a multidimensional histogram. Unlike a
histogram, the blocks are not in general rectangular.
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There is discretion in the choice of h and K(•).
Results in the kernel estimation literature suggest that any
reasonable kernel gives almost optimal results. Here we
use a normal kernel function. The other parameter, the
window width, is chosen according to the dispersion of
estimates as:

(8)

Another possible choice used by Ahn and Gao
[1999] is: 

(9)

where σ̂i is the standard deviation estimate of each vari-
able zi, T is the number of observations, and m is the
dimension of the variables. This window width has the
property that for certain joint distributions it minimizes
the asymptotic mean squared error of the estimated den-
sity function.

Given the density in Equation (7), we can calculate
any moments we desire from the distribution. For exam-
ple, the conditional expectation for the first-order approx-
imation is estimated as: 

(10)

where K(z) = (2π) –1/2e–1/2z2. This is a weighted average
of observed spread changes. Similar expressions yield esti-
mates for other conditional expectations and other
moments.

III. EMPIRICAL RESULTS

In theory, the credit spread can be broken into at least
two separate components. The first component reflects the
probability that default will occur and the associated
default loss. A second component originates from the fact
that bondholders need to be compensated for bearing extra
risk. We measure the credit spread as the yield difference
between the Moody’s yield index for seasoned Aaa and
Bbb corporate bonds and long-term constant-maturity
bond yields (Exhibit 1). Exhibits 2 and 3 provide sum-
mary statistics of the data set. 
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The Moody’s index is collated from an equally
weighted sample of yields on 75 to 100 bonds issued by
large non-financial corporations. Each bond issue included
in the index has a face value exceeding US$100 million,
an initial maturity of more than 20 years, and a liquid sec-
ondary market. 

A number of biases induced by the way the index
is constructed have led several authors to question its reli-
ability as a measure of corporate risk. One issue is that the
index includes a large number of callable bonds. Embed-
ded options give the issuers a right to call or repurchase
a bond before its expiration. In a falling interest rate envi-
ronment, this option is likely to be valuable, and corre-
spondingly shorten the effective maturity of the index.
Further, option characteristics may distort the theoreti-
cal dynamics of credit spreads derived from a hypothesized
underlying model.

A second issue is that bonds constituting an index are
often “refreshed” in order to maintain constant credit qual-
ity. In other words, the yield change from one period to
another does not measure the change in the same set of
bonds, but rather the change in the average yield on two
sequential sets of bonds that share the same credit rating. 

Exhibit 3 reveals that Aaa spreads have a mean of 0.74%
and a standard deviation of 0.35%, while Bbb spreads have
a mean of 1.82% and a standard deviation of 0.60%. Exhibits
4, 5, and 6 depict credit spreads and yield spread changes for
the data set. Both Aaa spreads and Bbb spreads depict excess
kurtosis that is inconsistent with a normal distribution.

Our objective in this exercise is to characterize the
dynamics of the index. 
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E X H I B I T 1
Corporate Yields

Data series obtained from Federal Reserve Board for February 1977-April 2001.
Yields (%) on Moody’s seasoned Bbb bond index, Moody’s seasoned Aaa bond
index, and 30-year constant-maturity Treasury.

E X H I B I T 2
Summary Statistics

Standard Number of
Mean Deviation Skewness Kurtosis Observations

Aaa 9.33 2.21 0.92 –0.08 291

Bbb 10.41 2.60 0.92 –0.00 291

Benchmark 8.59 2.29 0.75 –0.22 291

Source: Federal Reserve Board. 

Data series are yields (%) on Moody’s seasoned Aaa bond index, Moody’s
seasoned Bbb bond index, and 30-year government bond. Monthly observa-
tions February 1977-April 2001.

E X H I B I T 3
Credit Spread Statistics

Standard Number of
Mean Deviation Skewness Kurtosis Observations

Spread Statistics
∆A = Aaa –

Benchmark 0.74 0.35 0.98 1.17 291

∆B = Bbb –

Benchmark 1.82 0.60 0.91 0.29 291

Spread Changes

∆At – ∆At – 1 0.004 0.098 0.369 1.885 290

∆Bt – ∆Bt – 1 0.003 0.157 0.579 3.364 290

Spreads (%) on Moody’s seasoned Aaa bond index and Moody’s seasoned
Baa bond index over benchmark bond. The second panel reports statistics on
spread changes over each month. Monthly observations February 1977-2001.

0

0.5

1

1.5

2

2.5

3

3.5

4

1977.02 1981.04 1985.06 1989.08 1993.1 1997.12

S
pr

ea
d 

(%
)

BBB Spread AAA Spread

E X H I B I T 4
Credit Spreads

Monthly observations February 1977-April 2001. Spreads over benchmark bond.



Fi
na

l A
pp

ro
va

l C
op

y

Exhibits 7, 8, 9, and 10 provide the primary results
of the article. The results are obtained by an analysis of
time series data, so the parameter estimates are obtained
under a true measure rather than a risk-neutral measure.
The conditional drift and variance are obtained by apply-
ing Equations (5) and (6) to the data set for both Aaa index
yield spreads and Bbb index yield spreads. 

Exhibits 7 and 8 graph the conditional drift for Aaa
spreads and Bbb spreads. Aaa spreads show a mean rever-
sion toward the unconditional mean of 0.74% for most
of the range. The drift function seems to be linearly
related to the spread. The drift function drops mono-
tonically, but behaves erratically toward high levels of
spreads. Exhibit 8 by contrast shows that Bbb spreads are
non-linear in the drift function. Around its mean, the Bbb

SEPTEMBER 2001 THE JOURNAL OF FIXED INCOME 5

E X H I B I T 5
Histograms of Aaa Spreads and Spread Changes
A. Spread Distributions B. Spread Changes
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E X H I B I T 6
Histograms of Bbb Spreads and Spread Changes
A. Spread Distributions B. Spread Changes
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drift is essentially zero and behaves like a random walk,
but it then mean-reverts strongly when far away from the
mean. 

A non-linear drift function is observed in exami-
nations of the short-term interest rate (e.g., Ait-Sahalia
[1997] and Ahn and Gao [1999]). These studies suggest
that the primary reason for rejection of the affine class of
diffusion processes as valid representations of dynamics of
interest rates is misspecification of the drift function. A cor-
responding analysis for index spreads shows that the same
observation is valid for the Bbb index spreads. 

Exhibits 9 and 10 graph the conditional standard devi-
ations for Aaa spreads and Bbb spreads. Exhibit 9 shows that
Aaa spreads behave like a random walk with a conditional
standard deviations in the neighborhood of 0.35%. There-
fore, given the drift and diffusion functions, the classic
Vasicek [1979] specification for evolution of Aaa spreads is
likely to work well for most of the domain. Exhibit 10 reveals
that the conditional standard deviations of Bbb spreads
increase with the spread level. The slope of the increase sug-
gests a great sensitivity to interest rate levels.

An examination of the relationship of spreads to the
conditional drifts and standard deviation via a regression
sheds some light on some of the parametric specifications
that are likely to work well in practice. Exhibit 11 shows
regression estimates of the equations: 

(11)

for both Aaa and Bbb index spreads. 

Non Parametric Drift a b Log Spread Error

Non Parametric a b Log Spread Error

– ( )

– ( )

 

  

= + [ ] +
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E X H I B I T 1 1
Regression Estimates of Conditional Drift 
and Volatility Spreads

Number of 
a b R2 F-Stat Observations

Aaa Spreads
Drift
Estimate –0.01 –0.17 0.45 272 290
T-Stat –2.28 –16.50 290

Sigma
Estimate 0.30 0.002 0.03 0.26 290
T-Stat 95.12 0.51 290

Bbb Spreads
Drift
Estimate 0.30 –0.46 0.41 236 290
T-Stat 16.01 –15.37 290

Sigma
Estimate 0.13 0.58 0.92 3400 290
T-Stat 20.51 57.73 290
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The first panel of Exhibit 11 reveals that the non-
parametric volatility (σ) of Aaa spreads is independent of
the spread level, while the volatility of Bbb spreads has a
sensitivity of 0.58 to the spread level. Note that the sen-
sitivity to spread level is more than 0.58 for high levels of
Bbb spreads and lower for low levels of spreads. In the clas-
sic square root model of Cox, Ingersoll, and Ross [1985],
the exponent is 0.5 while it is 1.5 for the non-linear
model of Ahn and Gao [1999]. 

The drift function of Bbb spreads has a sensitivity
of -0.46 to the spread level. This result is driven largely
by the increased mean reversion at the high levels of Bbb
spreads. Therefore, for pricing applications, Aaa spread
dynamics are represented by the affine class of functions
(e.g., the Vasicek model [1979]). For Bbb spreads, the
affine class of models may not adequately capture the
non-linearity of the drift function. A maximum-likelihood
investigation (results not reported here) of various para-
metric specifications reveals that a non-linear drift spec-
ification substantially improves the explanatory power of
the model as measured by a chi-square statistic for the
goodness of fit (see Ait-Sahalia [1999]).

IV. SUMMARY

We examine the conditional drift and variance of
spreads using a non-parametric approach proposed by
Stanton [1997]. The data include Moody’s Aaa and Bbb
index yields for the period February 1977 through April
2001. We show that the drift and diffusion is linear in Aaa
index spreads, while Bbb spreads show a strong non-lin-
earity in the drift function. Around its mean, the Bbb drift
is essentially zero and behaves like a random walk; it then
mean-reverts strongly when far away from the mean.
Therefore, for pricing applications, the affine class of
parametric diffusion specifications is likely to work well
for Aaa spreads, but a non-linear specification is prefer-
able for Bbb spreads. 

ENDNOTE

The author thanks Douglas Foster and Anand Vijh for
helpful comments.
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