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Abstract—Distributed Denial of Service (DDoS) activities con-
tinue to dominate today’s attack landscape. This work proposes
a DDoS forecasting model to provide significant insights to
organizations, security operators and emergency response teams
during and after a targeted DDoS attack. Specifically, the work
strives to predict, within minutes, the attacks’ impact features,
namely, intensity/rate (packets/sec) and size (estimated number
of used compromised machines/bots). The goal is to understand
the future short term trend of the ongoing DDoS attack in terms
of those features and thus provide the capability to recognize
the current as well as future similar situations and hence
appropriately respond to the threat. Our analysis employs real
darknet data to explore the feasibility of applying the forecasting
model on targeted DDoS attacks and subsequently evaluate the
accuracy of the predictions. To achieve its tasks, our proposed
approach leverages a number of time series fluctuation analysis
and forecasting methods. The extracted inferences from various
DDoS case studies exhibit promising accuracy reaching at some
points less than 1% error rate. Further, our model could lead to
better understanding of the scale and speed of DDoS attacks and
should generate inferences that could be adopted for immediate
response and hence mitigation as well as accumulated for the
purpose of long term large-scale DDoS analysis.

I. INTRODUCTION

Denial of Service (DoS) attacks are characterized by an ex-
plicit attempt to prevent the legitimate use of a service. DDoS
attacks employ multiple attacking entities (i.e., compromised
machines/bots) to achieve their intended aim. Indeed, DDoS
activities continue to dominate today’s attack landscape. In a
recent report by Arbor Networks [1], it was concluded that
48% of all cyber threats are DDoS. Further, it was stated that
the top 4 perceived threats for the next 12 months will be
DDoS related, targeting customers, network and service in-
frastructure. Governmental organizations, corporations as well
as critical infrastructure were also recently deemed as DDoS
victims [2, 3, 4]. Moreover, a recent event demonstrated that
even a cyber security organization, namely Spamhaus, became
a victim of a large (i.e., 300 Gbps) DoS attack [5]. Thus,
DDoS attacks are and will continue to be a significant cyber
security problem, causing momentous damage to a targeted
victim as well as negatively affecting, by means of collateral
damage, the network infrastructure (i.e., routers, links, etc.),
the finance, the trust in, and the reputation of the organization
under attack. When an organization is subject to a DDoS,
it becomes essential for its IT security staff to answer the
following questions:

• During a DDoS attack, what is the future short term
trend (i.e., within minutes) of the attack in terms of
intensity/rate and size?

• After a DDoS attack, in terms of those impact features,
what was the impact of the attack and what are the
lessons learned?

The answers to these questions greatly influence the actions
and the resources that the organization will choose to employ
in responding to such malicious activity for the current incident
as well as for future occurrences. For instance, the organization
would often care more about high impact DDoS attacks, those
that can cause serious disruption of a service in a relatively
timely manner. If the latter is observed, the organization can
immediately respond and tweak its mitigation methods to
gauge the threat (i.e., forward the attack flow to a specific
number of servers and/or dynamically assign specific firewall
rules to handle the flood). This can reduce the response
time and cost for an organization. Note that, low-rate DDoS
attacks could be as worrisome as high impact ones, which
might indicate that the DDoS attack is attempting to evade
detection and at the same time exhaust the victim with long-
lived flows [6]. Moreover, having knowledge about the short
term (i.e., in terms of minutes) predicted impact features of
the ongoing DDoS would provide various inferences to the
organization and aid in answering the following questions;
will the DDoS increase or decrease in its intensity? will the
attack rate fluctuates? will the botnet targeting that specific
organization increase? will the DDoS cease after few minutes
or will it persist for a longer period of time? Further, the
insights extracted from such an analysis on numerous DDoS
occurrences targeting that organization could generate attack
patterns that could be useful for future mitigation. For example,
if the organization observes 5 distinct DDoS attacks in different
time periods where they all possess similar rates, size and
prediction parameters, then it can be inferred that the attacks
originate from a single (or at least similar) botnet and hence
point to a suspicious DDoS campaign. At a larger scale, such
analysis aims at providing computer emergency response teams
and observers of cyber events with DDoS trends, taking into
consideration the botnet size and the bots geo-distribution,
the victims geolocation, types of DDoS and bots that could
be inferred from rate and intensity distributions, as well as
future short term DDoS trends targeting various global-scale
organizational sites. The latter outcome could be used for
immediate response and alerting for mitigation purposes as
well as for long term large-scale DDoS analysis.
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In this context, the paper’s contributions are as follows:

• Proposing and adopting a systematic approach for
inferring DDoS activities, testing for predictability of
DDoS traffic and applying prediction models.

• Leveraging various time series analysis and forecast-
ing methods, including, detrended fluctuation analysis,
moving average, weighted moving average, exponen-
tial smoothing and linear regression.

• Characterizing and predicting DDoS attacks’ impact
features, namely, intensity/rate and size.

• Evaluating the proposed approach using real DDoS
traffic.

The remainder of this paper is organized as follows: In
Section II, we survey the related work. In Section III, we
present our proposed approach and discuss various aspects
of its components. In Section IV, we empirically evaluate
the approach and present several DDoS case studies. Finally,
Section V summarizes the paper and discusses the future work.

II. RELATED WORK

In this section, we provide a review of some relevant
literature work in the area of threat prediction. In [7], the
authors propose a method for threat prediction based on secu-
rity events using a security monitoring system. Their approach
consists of methods to collect and pre-treat security monitoring
events, extract threads and sessions, create attack scenarios
through correlation analysis, predict intrusions and express the
analytical results. The authors evaluate the effectiveness of
their prediction model by leveraging real security monitoring
events. Dagon et al. [8] adopt a model to accurately predict
botnet population growth. The authors use diurnal shaping
functions to capture regional variations in online vulnerable
populations. They state that since response times for malware
outbreaks is measured in hours, the ability to predict short-term
propagation dynamics permit resource allocation in a more
effective and a suitable manner. The authors use empirical data
from botnets collected at a sinkhole to evaluate their analytical
model. Moreover, Fachkha et al. [9] present and discuss vari-
ous darknet-triggered threats and their corresponding severity
level. Furthermore, they explore the inter-correlation of such
threats, by applying association rule mining techniques, to
build threat association rules. Their work demonstrate that in
fact certain darknet threats are correlated when targeting spe-
cific network destinations. Moreover, it provides insights about
threat patterns and allows the building of a classification model
for prediction purposes. In another work, Qibo et al. [10]
propose an approach to detect and predict DoS SYN flooding
attacks using non-parametric cumulative sum algorithm along
with an ARIMA model. Instead of managing all real-time
ongoing traffic on the network, the approach only monitors
SYN packets to predict the attack in the near future. To
perform the prediction, the authors propose the auto-regressive
integrated moving average model. The authors also run some
simulations to validate the effectiveness of the approach. In
[11], the authors propose a forecasting mechanism called
FORE (FOrecasting using REgression analysis) through a real-
time analysis of randomness in network traffic. According
to the authors, FORE can respond against unknown worms

1.8 times faster than other detection mechanisms. Evaluation
results using real malware traffic demonstrate the efficiency of
the proposed mechanism, including its ability to predict worm
behaviors starting from 0.03% infection rate.

Most of the above discussed related work assumes that the
threat traffic that needs to be predicted is in fact predictable.
We argue that such assumption, without essential validation,
might result in erroneous forecasting results, regardless of
which forecasting approach has been employed. In contrary,
in our work, we first statistically test for predictability before
attempting to forecast. Additionally, we state that our work in
terms of DDoS impact features characterization and prediction
is distinctive since the leveraged DDoS inference algorithm
is highly accurate and established [12] and does not depend
solely on SYN packets. Moreover, our work has wide-scope
benefits for security operators, security response teams as well
as specific organizations for the short term as well as for the
long term large-scale DDoS analysis. Moreover, our proposed
approach is designed to effectively work on near real time data.
Last but not least, for empirical evaluation purposes, we utilize
a significant amount of real network traffic.

III. PROPOSED APPROACH

This section presents and discusses various aspects of our
forecasting model.

Our dataset is based on real darknet data that we pos-
sess. Darknet analysis has been proven to be an effective
approach for inferring DDoS activities [12]. In a nutshell,
darknet traffic is Internet traffic destined to routable but unused
Internet addresses (i.e., dark sensors). Since these addresses
are unallocated, any traffic targeting to them may be sus-
picious and hence need to be investigated. Darknet analysis
has shown to be an effective method to generate cyber threat
intelligence [13, 14, 15]. Darknet traffic is typically composed
of three types of traffic, namely, scanning, misconfiguration
and backscattered traffic [16]. Scanning arises from bots and
worms while misconfiguration traffic is due to network/routing
or hardware/software faults causing such traffic to be sent
to the darknet sensors. On the other hand, backscattered
traffic commonly refers to unsolicited traffic that results from
responses to DoS attacks with spoofed source IP addresses.

The main components of our proposed approach is depicted
in Figure 1. In short, the approach is rendered by extracting
backscattered data and session flows from darknet traffic. Sub-
sequently, DDoS activities are inferred and consequently tested
for predictability. Finally, prediction techniques are applied
on DDoS traffic, when applicable. The proposed approach is
detailed next.

A. Extracting Backscattered Packets

In order to extract backscattered packets, we adopt the
technique from [16] that relies on flags in packet headers, such
as TCP SYN+ACK, RST, RST+ACK, and ACK. However, this
technique might cause misconfiguration as well as scanning
probes (i.e., SYN/ACK Scan) to co-occur within the backscat-
tered packets. In order to filter out the misconfiguration, we use
a simple metric that records the average number of sources per
destination darknet address. This metric should be significantly
larger for misconfiguration than scanning traffic [17]. The
scanning packets are filtered out in the next step.
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Fig. 1: Flow Chart of the Proposed Approach

B. Extracting Session Flows

In order to filter out the scanning activities, we split the
connections into separate session flows, where each session
consists of a unique source and destination IP/port pair. The
rationale for this is that DDoS attempts possess a much greater
number of packets sent to one destination (i.e., flood) whereas
portsweeps scanners have one or few attempts towards one
destination (i.e., probe).

C. Inferring DDoS Activities

We next aim to confirm that all the extracted sessions in
fact reflect real DDoS attempts. To accomplish this, we employ
the DDoS detection parameters from [12] to label a session as
a single DoS attack. We decided to leverage the latter work
since it is directly applicable to our work, which is based on a
flow-based approach and leverages backscattered traffic to infer
DoS attacks from darknet traffic. We proceed by merging all
the previously extracted sessions that have the same source IP
(i.e., victim) to extract the DDoS attack.

D. Testing for Predictability

A time series is a sequence of data values that is measured
at successive points in time and spaced at uniform time
intervals [18]. In order to predict DoS features, we aim to
test if the time series of DDoS flows are first correlated.
Otherwise, our prediction model would be irrelevant. In order
to accomplish this, we statistically test for predictability in
such time series using the Detrended Fluctuiona Anlaysis
(DFA) technique. DFA was first proposed in [19] and has since
been used in many research areas to study signals correlation.
The DFA technique is summarized next.

The DFA method of characterizing a non-stationary time
series is based on the root mean square analysis of a random
walk. DFA is advantageous in comparison with other methods

such as spectral analysis [20] and Hurst analysis [21] since it
permits the detection of long range correlations embedded in
a seemingly non-stationary time series. It avoids as well the
spurious detection of apparent long-range correlations that are
an artifact of non-stationarity. Another advantage of DFA is
that it produces results that are independent of the effect of
the trend [22]. Last but not least, this technique is applicable
to darknet traffic [23].

Given a traffic time series, the following steps need to be
applied to implement DFA:

• Integrate the time series; The time series of length N
is integrated by applying

y(k) =

k∑
i=1

(B(i)−Bave)

where B(i) is the ith interval and Bave is the average
interval.

• Divide the time series into “boxes” (i.e., bin size) of
length n.

• In each box, perform a least-squares polynomial fit of
order p. The y coordinate of the straight line segments
is denoted by yn(k).

• In each box, detrend the integrated time series,
y(k), by subtracting the local trend, yn(k). The
root-mean-square fluctuation of this integrated and
detrended time series is calculated by

F (n) =

√√√√ 1

N

N∑
k=1

(y(k)− yn(k))2

• Repeat this procedure for different box sizes (i.e., time
scales) n

The output of the DFA procedure is a relationship F (n), the
average fluctuation as a function of box size, and the box
size n. Typically, F (n) will increase with box size n. A
linear relationship on a log-log graph indicates the presence
of scaling; statistical self-affinity expressed as F (n) ∼ nα.
Under such conditions, the fluctuations can be characterized
by a scaling exponent α, which is the slope of the line
relating logF (n) to log(n). The scaling exponent α can take
the following values, disclosing the “correlation status” of the
traffic time series:

• α < 0.5: anti-correlated

• α ≈ 0.5: uncorrelated or white noise

• α > 0.5: correlated

• α ≈ 1: 1/f -noise or pink noise

• α > 1: non-stationary, random walk like, unbounded

• α ≈ 1.5: Brownian noise

In our work, if the application of DFA on the DDoS traffic
time series outputs a “correlated” status, then we assert that it
is predictable; else, we extract another DDoS flow and re-test
it for predictability.
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E. Forecasting DDoS

Finally, to perform the predictions, we apply different types
of forecasting techniques, namely, moving average, weighted
moving average, exponential smoothing and linear regression.
We have selected to leverage these techniques instead of other
complex well-known models such as ARIMA and GARCH
[24] since the latter require long-term (weekly, monthly, yearly,
etc.) seasonal time series data, which is not true in our case
that deals with short-term DDoS traffic. The selected methods
are briefed next.

Moving Average (MA): The single parameter of the model
is estimated as the average of the previous x data points at time
t in the time series. The MA is given by:

x̂t+1 =
1

k
∗ (xt + xt−1 + ...+ xt−k−1),

where k is the smoothing window or period. Note that, the
forecast in this technique should not begin until the specified
previous data are available.

Weighted Moving Average (WMA): This technique is
based on a numeric value known as the weight. In general,
a WMA is more responsive to change in the time series data
than a simple MA. The computation of the WMA estimated
temporal average is given by [25]:

x̂t+1 =
wt−kxt−k + ...+ wtxt

h
,

where k is the chosen window size and h is the sum of
the temporal weight, h = wt−k + ... + wt. In general, to
obtain better results, highest weight is given to the most recent
periods. In our work, we run a solver [26] to automatically
obtain the weight values that produces a relatively better
prediction results.

Note that in our work, for the above two techniques,
namely, the MA and the WMA, we adopt a time window
that is equivalent to three data points in the time series. We
believe this provides a good estimate for such models as also
demonstrated in [27]. Future work would extend such analysis
by experimenting with different time window sizes.

Exponential Smoothing (ES): This technique calculates
the parameter of the estimated prediction value b as the
weighted average of the last observation and the last estimate.
The estimated value is given by:

x̂t+1 = αxt + (1− α)x̂t,

where α is the smoothing factor and has a value between [0,1].
In our analysis, we again run a solver [26] to automatically
choose the best value of α that optimizes the prediction error
rate.

Linear Regression (LR): This technique performs sta-
tistical analysis that assesses the association between two
variables. This method is used to pinpoint the relationship
among these variables. A simple LR is given by:

LR(y) = a+ bx,

where x and y are the variables, b is the slope of the regression

line, a is the intercept point of the regression line and the y-
axis.

Two main elements characterize this model, namely, the
slope and the intercept, given by:

Slope(b) =
N

∑
XY −∑

X
∑

Y

N
∑

X2 − (
∑

X)2
,

Intercept(a) =

∑
Y − b

∑
X

N
,

where N is the number of values or elements, X is the first
score and Y is the second score. The slope describes the incline
or grade of the line whereas the intercept is the point where the
graph of a function intersects with the y-axis of the coordinate
scheme.

We refer interested readers to [28, 29] for more details on
the above mentioned prediction techniques.

To evaluate the performance of the prediction methods,
we compute the absolute prediction error. The equation of the
absolute prediction error is given by:

r(t) =
|X̂i(t)−Xi(t)|

Xi(t)

This error metric is defined as the absolute difference of
the predicted value from the actual value divided by the actual
value. The latter is a de-facto metric when computing the
performance of a prediction model [29, 30].

IV. EMPIRICAL EVALUATION

In this section, we present the empirical evaluation results.
We abide and closely follow the steps of our proposed
approach that were discussed in Section III to present three
real (D)DoS case studies targeting three different servers.
The case studies respectively consist of TCP SYN flooding
targeting an HTTP (web) server, TCP SYN flooding targeting
a Domain Name System (DNS) and an ICMP (ping) flooding.
The three case studies are summarized in Table I.

Case Study Analyzed
Attack
Duration
(second)

Intensity
(packet)

Rate
(pps)

DFA
Value

Size of
Spoofed
IPs

TCP SYN Flooding
(HTTP)

3194 1799228 563.31 0.91 24

TCP SYN Flooding
(DNS)

3550 29016 8.17 0.93 206

ICMP Flooding 3599 3577 1.00 0.67 1

TABLE I: Summary of the Analyzed (D)DoS Case Studies

The table shows the analyzed duration of the attack (in
seconds), the attack’s intensity in terms of number of generated
packets, its average rate (packets/sec), its DFA value and its
size in terms of number of used compromised machines/bots.
In regards to our dataset, the possessed darknet data is being
received on a daily basis from a trusted third party. The darknet
sensors are distributed in many countries and monitor /13
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Fig. 2: TCP SYN Flooding on an HTTP Server - Intensity Distribution & Prediction
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Fig. 3: TCP SYN Flooding on an HTTP Server - Size Distribution & Prediction

address blocks. In terms of DFA computation, we utilize the
DFA MATLAB code found in [31] and used 1ms as the bin
size. Further, when applying the forecasting techniques, for the
purpose of error calculation, we use two thirds (66.66%) of the
DDoS traffic time series for training and one third (33.33%) for
testing. It is also noteworthy to mention that when performing
the prediction analysis, depicted in Figures 2 to 6, we chose a
time series with bin size equals to one minute. We argue that
such a choice is rational and should provide enough resources
(i.e., time) to the organization under attack to act upon the
observed values. The case studies are elaborated next.

TCP SYN Flooding on an HTTP Server: This case
study refers to a DDoS TCP SYN flooding targeting an HTTP
web server. From Table I, we notice that this attack lasted 53
minutes, generated around 1.8 million TCP SYN packets, with
an average of 560 packets per second from 24 unique spoofed
IPs (i.e., bots). The value of the rate of the attack demonstrates
the severity of this DDoS attack.

Moreover, Figures 2 and 3 demonstrates the application of
the forecasting techniques. Note that, we attempt to predict
this DDoS since its corresponding DFA result was shown
to be “correlated” with value = 0.91 as stated in Section
III-D). Figure 2 illustrates the attack’s intensity distribution
with its corresponding forecasting techniques. It is shown that

the attack peaks with around 175 thousand packets at the 46th

minute. The predicted values (within the future 3 minutes) of
such distribution reveal that the attack will decrease in intensity
and fluctuates between 9000 and 3500 packets. On the other
hand, Figure 3 illustrates the attack’s size in terms of number
of used spoofed IPs. It is shown that the number of spoofed

IPs peak to 16 in the 48th minute. Similar to the intensity, it is
shown from the prediction techniques that the size will as well
decrease, hinting that the DDoS might soon diminish in size.
The absolute prediction error of the forecasting techniques for
this DDoS case study is summarized in Table II.

Prediction Techniques

MA WMA ES LR

Intensity 0.57 0.39 0.19 0.86

Size 0.70 0.53 1.34 0.22

TABLE II: TCP SYN Flooding on an HTTP Server - Absolute Prediction Error (%)

We can notice that all the techniques for both impact fea-
tures recorded an error less than 1%. Further, the exponential
smoothing algorithm was best in predicting the intensity while
the linear regression was best in predicting the size of the
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Fig. 4: TCP SYN Flooding on a DNS Server- Intensity Distribution & Prediction

0 

2 

4 

6 

8 

10 

12 

14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

N
um

be
r o

f U
ni

qu
e 

Sp
oo

fe
d 

IP
s 

Time (1 minute bin size) 

Real Traffic 

3PMA 

3PWMA 

Exp. Smoothing 

Linear Regression 

Fig. 5: TCP SYN Flooding on a DNS Server- Size Distribution & Prediction

attack. This case study allows the organization whose web
server is under a targeted DDoS to gain insight in terms
of the current and future short term trend of the ongoing
attack in terms of the defined attack impact features. Moreover,
assuming that the organization modified its mitigation methods
before predicting the future impact distributions, reveal that
such modifications are effective.

TCP SYN Flooding on a DNS Server: This case study
refers to a DDoS TCP SYN flooding targeting a DNS server.
From Table I, we notice that this attack lasted 59 minutes,
generated around 29 thousand TCP SYN packets, with an
average of 8 packets per second from 206 unique spoofed IPs
(i.e., bots). Although the size of this DDoS attack is larger
than the first case study, however, its intensity in terms of the
generated packets and hence rate is significantly lower.

Figures 4 and 5 depict the characterization in addition to
demonstrating the application of the forecasting techniques.
We also predicted this DDoS attack since its corresponding
DFA result was shown to be “correlated” with value =
0.93. Figure 4 illustrates the attack’s intensity and prediction
distributions. It is shown that the attack peaks around 1600

packets at the 19th minute. The predicted values of such
distribution shows insights of increase in the attacks intensity.
On the other hand, Figure 5 reveals the attack’s size in terms of
number of used compromised machines/bots. It is shown that

the number of spoofed IPs peaks to 12 in the 45th minute.
Furthermore, it is shown from the prediction models that the
attack size will either stay constant or slightly decrease. The
absolute prediction error of the forecasting techniques for this
DDoS case study is summarized in Table III. We notice that

Prediction Techniques

MA WMA ES LR

Intensity 12.46 5.24 2.75 35.71

Size 0.51 0.37 0.16 0.72

TABLE III: TCP SYN Flooding on a DNS Server - Absolute Prediction Error (%)

the linear regression poorly performs with regards to this case
study. Moreover, the exponential smoothing algorithm was best
in predicting both the intensity and the size. This case study
allows the organization whose DNS server is under a DDoS
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Fig. 6: ICMP (ping) Flooding - Intensity Distribution & Prediction

attack to be alerted that the attack’s intensity might increase.
This provides the organization the capability to comprehend
the situation and hence adaptively respond to the threat.

ICMP (ping) Flooding: This case study refers to a DoS
ICMP (ping) flooding targeting a server. The major difference
between this attack and the former case studies is that this
attack is generated from only one machine ( i.e., not dis-
tributed) and it could be attempting to evade detection by
using a relatively low attack rate (1 packet/second). Further, its
DFA result shows signs of strong correlation (the DFA scaling
exponent α = 0.67) in its attack signal. This is confirmed in
Figure 6 where the intensity distribution fluctuates around 60
packets. From the prediction techniques, we can observe that
the attack’s intensity will continue to be close to 60 packets or
slightly increase. The summary of the result is shown in Table
IV. Moreover, the attack’s correlation and intensity features
allow the organization whose server is under this type of DoS
attack to infer that the attack is relatively of low impact and
non-distributed and hence current mitigation methods will be
sufficient.

Prediction Techniques

MA WMA ES LR

Intensity 0.13 0.13 0.12 0.13

TABLE IV: ICMP (ping) Flooding - Absolute Prediction Error (%)

It should be noted that the generated inferences from the
above case studies aim to better understand the scale and rate
of DDoS attacks that could be adopted by organizations for im-
mediate response and hence mitigation as well as accumulated
by security operators, emergency response teams and observers
of large-scale Internet DDoS events for the purpose of long
term large-scale DDoS analysis, clustering and correlation.

V. CONCLUSION

This paper proposed an approach that is rendered by
a DDoS forecasting model. The aim is to provide the
organization under attack the capability to comprehend
the situation and hence adaptively respond to the threat.
We characterize and predict, within minutes, the attacks’
impact features, namely, intensity/rate (packets/sec), and
size (number of used compromised machines/bots). Our
proposed approach leverages real darknet data to infer DDoS
activities, test for predictability of DDoS traffic and apply
prediction techniques, when applicable. Empirical evaluations
presented three attack case studies to demonstrate possible
extracted insights and inferences. For future work, we intend
to experiment with more complex forecasting methods
that can operate on probability and long-term bases as well
as implementing our proposed approach in a real-time fashion.
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