
On Detecting and Clustering Distributed
Cyber Scanning

Elias Bou-Harb
CIISE, Concordia University
Montreal, Quebec, Canada
e bouh@encs.concordia.ca

Mourad Debbabi
CIISE, Concordia University
Montreal, Quebec, Canada

debbabi@ciise.concordia.ca

Chadi Assi
CIISE, Concordia University,

Montreal, Quebec, Canada
assi@ciise.concordia.ca

Abstract—This paper proposes an approach that is com-
posed of two techniques that respectively tackle the issues of
detecting corporate cyber scanning and clustering distributed
reconnaissance activity. The first employed technique is based
on a non-attribution anomaly detection approach that focuses
on what is being scanned rather than who is performing the
scanning. The second technique adopts a statistical time series
approach that is rendered by observing the correlation status
of a traffic signal to perform the identification and clustering.
To empirically validate both techniques, we experiment with two
real network traffic datasets and implement two proof-of-concept
environments. The first dataset comprises of unsolicited one-
way telescope/darknet traffic while the second dataset has been
captured in our lab through a customized setup. The results show,
on one hand, that for a class C network with 250 active hosts and
5 monitored servers, the proposed detection technique’s training
period required a stabilization time of less than 1 second and a
state memory of 80 bytes. Moreover, in comparison with Snort’s
sfPortscan technique, it was able to detect 4215 unique scans
and yielded zero false negative. On the other hand, the proposed
clustering technique is able to correctly identify and cluster the
scanning machines with high accuracy even in the presence of
legitimate traffic.

I. INTRODUCTION

The ever increase population and adoption of cyberspace
has been a great asset both socially and economically. How-
ever, recent events demonstrated that cyberspace could be
subjected to amplified, debilitating and disrupting attacks that
might lead to severe security issues with drastic consequences.
In general, cyberspace could facilitate distributed denial of
service attacks [1], advanced persistent threats [2], zero day
exploits [3] and cyber terrorism/warfare [4, 5]. Despite efforts
to protect the cyberspace, the latest report from government
officials highlighted that only limited progress has been made
in improving the cyber security of crucial networks [6]. Cyber
scanning, the task of probing enterprise networks or Internet
wide services, searching for vulnerabilities or ways to infiltrate
IT assets, has been a growing cyber security concern. The
latter is due to the fact that cyber scanning is commonly the
primary stage of an intrusion attempt that enables an attacker
to remotely locate, target, and subsequently exploit vulnerable
systems. It is basically a core technique and the main enabler
of the above mentioned cyber attacks. Indeed, the capability
to detect, identify and attribute such scanning activity and its
components is an important task to achieve as this would aid in
preventing or mitigating the actual cyber attack from occurring.

Motivated by such requirement, this paper contributes by:

• Employing a non-attribution (i.e., independent from
the scanning source) anomaly detection approach that
allows the detection of sophisticated reconnaissance
activity with zero false negative and limited manage-
able false positive rates in addition to requiring min-
imalistic system state storage with a fast stabilization
period.

• Proposing and adopting a new distributed scanning
clustering approach based on a statistical time series
analysis method. The approach is able to identify and
cluster the scanning machines with high accuracy even
in the presence of legitimate traffic.

• Utilizing the Simple Network Management Protocol
(SNMP) to manage the anomaly detection approach’s
training period and by applying the Detrended Fluc-
tuation Analysis (DFA) technique to the problem
of clustering distributed cyber scanning. These ap-
proaches have never been investigated before in such
context.

• Experimenting, to empirically validate both tech-
niques, with two real network traffic data sets.

The remainder of this paper is organized as follows.
Section II discusses current detection and clustering techniques
and pinpoints the drawbacks of attribution-based approaches.
Section III presents the non-attribution anomaly detection
approach and provides a discussion related to the training and
detection periods. Section IV presents the clustering statistical-
based approach by discussing the detrended fluctuation analy-
sis. The evaluation environments coupled with the results are
described in Section V. Finally, Section VI summarizes the
paper and highlights the future work.

II. RELATED WORK

In this section, we discuss cyber scanning current detec-
tion and clustering techniques and subsequently pinpoint the
drawbacks of attribution-based approaches.

Zhang et al. [7] proposed a scan detection method based
on a distributed cooperative model. Their technique is com-
posed of feature-based detection, scenario-based detection and
statistic-based detection. Their proposed architecture is decom-
posed into 5 layers (sensors, event generators, event detection
agents, a fusion center and a control center) that collaborate to978-1-4673-2480-9/13/$31.00 c© 2013 IEEE

achieve the intended task. The technique’s statistic-based de-
tection employs predefined thresholds that allows the detection
of both scan and denial of service attacks. A positive aspect
of this work is that the proposed technique is well suited to
distributed large-scale environments. However, the presented
work was based on an illustrated described scenario and the
authors did not discuss its applicability on real data samples. In
[8], Bhuyan et al. presented the adaptive outlier based approach
for coordinated scan detection (AOCD). First, the authors used
the principal component analysis feature reduction technique
to identify the relevant feature set. Second, they employed a
variant of the fuzzy c-means clustering algorithm to cluster
information. The authors tested their algorithm using differ-
ent real-life datasets and compared the results against other
available literature techniques. Their approach assumes that the
target of the scanning is a set of contiguous addresses, which
is not always the case. In another work, Baldoni et al. [9] pro-
posed a collaborative architecture where each target network
deploys local sensors that send alarms to a collaborative layer.
This, in turn, correlates this data with the aim of (1) identifying
coordinated cyber scanning activity while (2) reducing false
positive alarms and (3) correctly separating groups of attackers
that act concurrently on overlapping targets. The soundness of
the proposed approach was tested on real network traces. Their
proposed system is designed to leverage information coming
from various network domains to detect distributed scanning.
Hence, the collaborative layer appears to be ineffective when
the adversary is acting only against one network domain.

Most of the aforementioned detection and clustering tech-
niques and other literature work [10–12] could be noted as
being attribution-based; they detect and cluster distributed
scanning based on the last perceived scanning source. Hence,
they might encounter one of the following issues:

• Determining attribution is not always possible, which
might decrease the effectiveness of such techniques.

• The scans may either be so slow or so broadly
distributed that they exhaust the finite computational
state of scanning detection systems or fail to exceed
some predefined alert threshold.

• A significant amount of system state (i.e., memory,
network topology information, storage) needs to be
maintained by the monitoring system in order to per-
form effectively (reducing the detection time window
to accommodate network traffic fluctuations might
cause excessive false negatives and false positives).

In the next two sections, we present and elaborate on our
approach that is composed of two techniques. Specifically,
Section III presents the non-attribution anomaly detection
technique while Section IV describes the statistical time series
clustering technique. In a nutshell, the first technique consists
of two periods: (1) A training period and (2) an anomaly
detection period. The outcome of this technique is detected
scans with minimal false positive rate. The second technique
takes as input the detected scans from the first technique and
aims to cluster and identify the scanning machines even in the
presence of legitimate traffic.

III. THE NON-ATTRIBUTION ANOMALY DETECTION
TECHNIQUE

In this section, we present the non-attribution anomaly
detection technique and provide a discussion related to its
training and detection periods.

A. Idea Rationale

The rationale behind the idea states that the available
services that are provided by the hosts within an enterprise
network represent the facade of that network; the offered
services induce the possible leakage of information that could
be retrieved by an attacker during a successful scan. Hence, the
idea takes full advantage and solely of the network topology
by constructing what we refer to as ‘local host facade’ (LHF)
and ‘enterprise network facade’ (ENF). The former is the
accessible services per host while the latter is the combination
of all accessible services of all active hosts within the network.

B. ENF Management

In the training phase of our technique, we leverage the
SNMP [13] to manage the ENF. SNMP is an Internet-standard
protocol for managing devices on IP networks. It consists of
components for network management, including an application
layer protocol, a database schema, and a set of data objects.
The protocol’s information exchange is performed between a
management station and an agent (embedded in the managed
entity) in the form of SNMP messages. For an in-depth review
of SNMP, including its inner workings, we refer the readers
to [14].

The idea is to exploit specific de-facto SNMP procedures
to manage the ENF. The latter task is divided into constructing
the ENF by retrieving the list of listening ports on each host
and maintaining (adding/deleting certain IPs/ports) the list in
case of any change in accordance with a certain predefined
update threshold. In the following, we briefly discuss the
employed SNMP procedures and consequently elaborate on
their roles in managing the ENF.

The procedure SNMP Receive-GetRequest [13] is
issued by an SNMP management station in order to read or
retrieve an object value from a managed entity. The managed
SNMP entity responds to a GetRequest protocol data unit
(PDU) with a GetResponse PDU. The GetRequest oper-
ation is atomic; either all the values are retrieved or none is. If
the responding entity is able to provide values for all the vari-
ables listed in the incoming VariableBindings list, then
the GetResponse PDU includes the VariableBindings
field coupled with a value supplied for each variable. If at least
one of the variable values cannot be supplied, then no values
are returned [13].

In the current work, this procedure, namely, SNMP
Receive-GetRequest, is used to construct the ENF by
leveraging the following two request methods:

GetRequest(ipRouteDest, tcpNoPorts)

GetRequest(ipRouteDest, udpNoPorts)

On the other hand, the task of maintaining the ENF could
be divided into two sub-tasks. The first is when we need to
update the list of active IPs/hosts and the second is when we
need to modify the list of listening TCP and UDP ports for a
specific host. To accomplish this, another SNMP procedure is
presented, namely SNMP Receive-SetRequest [13] .

The procedure SNMP Receive-SetRequest is issued
by an SNMP entity on behalf of a management station. It has
the same PDU exchange pattern and the same format as the
GetRequest PDU. However, the SetRequest is used to
write an object value rather than reading or retrieving one.

In this work, we exploit SNMP Receive-SetRequest
to update the ENF; based on a predefined update threshold,
and whenever there is an update in the hosts (changing status
from active to non-active or vice-versa) or their corresponding
listening ports, we issue a SetRequest PDU to reflect
the changes. For instance, if we notice that an active (i.e.,
connected) host with an IP address of 10.0.0.1 is no longer
active (i.e., disconnected), the following SNMP request [13]
is issued to remove that host from the ENF:

SetRequest(ipRouteDest.10.0.0.1 = invalid)

The above two procedures provide methods to construct and
maintain what we have defined as the enterprise network
facade. Recall that this characterizes the training period of
our proposed non-attribution detection technique. Since the
management of the ENF is dependent solely on the enterprise
network services and is totally decoupled from any external
traffic, our approach is advantageous in two core areas. First,
it requires almost negligible time to stabilize which renders its
implementation very operationally feasible. Second, it relies
on the observation and manipulation of a protocol (SNMP)
found in every network, where its actual overhead on network
bandwidth and hardware is minimal even in large network
environments [15, 16].

C. Using ENF for Scan Detection

Once the training period has completed and an ENF is
constructed, the anomaly detection phase commences. Scan
detection is performed by monitoring external incoming TCP
or UDP connection attempts. The attempts could be destined
to the following targets: (1) an unallocated IP address, (2) an
allocated IP address with a port combination not found in the
ENF, (3) an allocated IP address with a port combination found
in the ENF and (4) an allocated or an unallocated IP address
outside of the monitored zone. In our approach, the detection
occurs when we notice target 2 occurring, namely, an attempt
to an allocated IP address with a port combination not found
in the ENF. If the latter case occurs, we flag the connection
attempt and log its corresponding details such as source and
destination IP and port, protocol, and the timestamp. Target
1 is referred to as dark IPs [17] and their analysis is outside
the scope of this work. Target 3 is as well excluded from the
analysis. The exclusion of this target, at a first glance, seems
to carry a limitation of our work in that scans to valid services
(i.e., entries in the ENF) will not be detected. For instance, a
DNS scan towards a naming (DNS) server is considered a valid
activity and thus would not be considered a scan. However, this
type of scan would indeed be detected using our approach as
the same scan would almost certainly also occur against other

hosts in the network not offering DNS. The scanning activity
would not be detected if it were directed, although unlikely,
solely at the naming server. However, we would consider the
latter activity to be an actual attack (i.e., such as a denial of
service attack) rather than a scan. Finally, target 4 depends
on our monitored zone and intuitively we do not detect scans
outside the monitored areas.

D. Discussion

In this part, we provide a discussion that is related to the
technique’s training and detection periods.

The training period is the period during which we first
construct the ENF. Hence, as is the case with any technique
that requires a training period, it is possible that malicious
hosts activity may become part of the reference baseline. For
example, if a trojan horse program [18] has been maliciously
installed and has been running on one of the corporates’s
network servers, then the program would typically open up
listening ports that are otherwise not supposed to be listening.
To avoid this, we can match or verify the LHF with the
enterprise network’s security policy. Any inconsistencies are
removed from the LHF to securely build the ENF. Moreover,
our technique’s training period is efficient as the ENF only
needs to record and maintain the state of the network services.
To further improve this, we can manipulate SNMP to gather
and record information only about specific hosts within the
enterprise network. For example, we can build a custom ENF
that includes only some of the network servers and to exclude
other servers and workstations (we refer to those selected
servers as belonging to within the boundaries of the monitored
zone).

On the other hand, our proposed anomaly scanning detec-
tion approach does not rely on the identification of the scanning
source. Therefore, it can detect certain classes of sophisticated
scanning techniques (such as distributed and slow scanning)
that make determining the root cause of the scanning activity
impractical. Furthermore, the detection technique requires only
a single packet to flag an attempt as a scan event and requires
minimalistic system state storage especially if used with a
custom ENF. Additionally, our approach is transport protocol-
independent and hence can detect both TCP and UPD scans.

IV. THE STATISTICAL TIME SERIES CLUSTERING
TECHNIQUE

In this section, we present the rationale and aim behind
our proposed statistical time series clustering approach and
subsequently describe the detrended fluctuation analysis (DFA)
method.

A. Idea Rationale

Our approach is based on the observation that scanning
machines that use the same technique to perform the scan
will likely demonstrate temporal correlation and similarity.
The idea is to capture such correlation in the traffic signal
to perform the clustering. The approach aims at identifying
and clustering the scanning machines even in the presence of
legitimate traffic.

B. Detrended Fluctuation Analysis

To accomplish the above aim, we adopt the time series
Detrended Fluctuation Analysis (DFA) method. DFA was first
proposed in [19] and has since been used in many research
areas to study signals correlation. Very limited work in the
areas of cyber security and malicious traffic detection has
utilized DFA [20, 21], and to the best of our knowledge,
no work has applied the DFA technique to the problem of
clustering distributed cyber scanning. The DFA method is
discussed next.

The DFA method of characterizing a non-stationary time
series is based on the root mean square analysis of a random
walk. DFA is advantageous in comparison with other methods
such as spectral analysis [22] and Hurst analysis [23] since it
permits the detection of long range correlations embedded in
a seemingly non-stationary time series. It avoids as well the
spurious detection of apparent long-range correlations that are
an artifact of non-stationarity. Another advantage of DFA is
that it produces results that are independent of the effect of
the trend [24].

Given a traffic time series, the following steps need to be
applied to implement DFA:

• Integrate the time series; The time series of length N
is integrated by applying

y(k) =

k∑
i=1

[B(i)−Bave] (1)

where B(i) is the ith interval and Bave is the average
interval.

• Divide the time series into “boxes” of length n.

• In each box, perform a least-squares polynomial fit of
order p. The y coordinate of the straight line segments
is denoted by yn(k).

• In each box, detrend the integrated time series,
y(k), by subtracting the local trend, yn(k). The
root-mean-square fluctuation of this integrated and
detrended time series is calculated by

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (2)

• Repeat this procedure for different box sizes (i.e., time
scales) n

The output of the above procedure is a relationship F (n),
the average fluctuation as a function of box size, and the
box size n. Typically, F (n) will increase with box size n.
A linear relationship on a log-log graph indicates the presence
of scaling; statistical self-affinity expressed as F (n) ∼ nα.
Under such conditions, the fluctuations can be characterized
by a scaling exponent α, which is the slope of the line relating
logF (n) to log(n).

The scaling exponent α can take the following values,
disclosing the correlation status of the traffic time series.

• α < 0.5: anti-correlated.

• α ≈ 0.5: uncorrelated or white noise.

• α > 0.5: correlated.

• α ≈ 1: 1/f -noise or pink noise.

• α > 1: non-stationary, random walk like, unbounded

• α ≈ 1.5: Brownian noise.

V. EVALUATION: DATASETS, METHODOLOGIES AND
RESULTS

For the purpose of empirically validating our approach,
which consists of the proposed two techniques, we experi-
mented with two real network traffic datasets and implemented
two proof-of-concept environments.

A. Evaluating the non-attribution anomaly detection approach

We used a dataset that consists of unsolicited one-way
telescope/darknet traffic [25] retrieved in real-time from a
trusted third party framework. The traffic originates from
the Internet and is destined to numerous /24 and /16
network sensors. The data was collected during the period of
November 1, 2012 and December 1, 2012. Tables I and II,
and Figure 1 show some network, transport and application
level statistical information about the dataset.

TCP UDP ICMP Others

86.3% 11.7% 1.8% 0.2%

TABLE I: Protocols Distribution

Usage
(%)

Class Source Destination
A 63.3 0.3
B 21.2 9.5
C 15.5 90.2

TABLE II: IP Class Distribution

Fig. 1: Application Layer Protocols

We selected part of the traffic that is destined to a /24
network collected at the sensor. We assumed that an opera-
tional/corporate network, having the same IP configuration as

the incoming traffic, exists behind the sensors. Consequently,
we built the network that is illustrated in Figure 2. The
network has a Classless Inter-Domain Routing (CIDR) address
of 192.168.1.0/24 and is composed of 250 active hosts divided
into 245 workstations and 5 servers. We as well took advantage
of the SNMP procedures of Section III-B to develop an SNMP
tool. The tool is based on the software components provided
by eMarksoft SNMP [26].

Internet Incoming Traffic

245 Workstations 5 Servers

HTTP/TELNET FTP DNS

SSH MS-AD/POP3

Fig. 2: Enterprise Network

We first used the developed tool to execute the training
period of our proposed approach. The ENF was populated with
5 LHFs (the other workstations are not offering any services)
as illustrated in Table III. The task was completed in 0.32
seconds and required 80 bytes of state memory.

Host TCP Ports Description

Server 1 80, 23 HTTP/TELNET
Server 2 21 FTP
Server 3 53 DNS
Server 4 23 SSH
Server 5 445, 110 MS-Active Directory/POP3

TABLE III: ENF Details

To validate the detection capabilities of our approach, we
experimented with a one day sample traffic captured from
our dataset. We also compared our approach with Snort’s
sfPortscan preprocessor using the same day sample. sfPortscan
[27], a preprocessor plugin for the open source network intru-
sion and detection system Snort [28], provides the capability
to detect TCP, UDP, and ICMP scanning. The sfPortscan
preprocessor detects scans by counting RST packets from
each perceived target during a predetermined timeout interval.
Before declaring a scan, 5 events (i.e., RST packets) are
required from a given target within a window. The sliding
timeout window varies from 60 to 600 seconds by sensitivity
level; at the highest level, an alert will be generated if the 5
events are observed within 600 seconds. We have chosen to
compare our approach with Snort’s sfPortscan preprocessor
since Snort is one of the most broadly deployed intrusion
detection/prevention technology worldwide and has become a
de-facto standard.

According to the results, using our approach with this
specific data sample, we were able to detect 4215 unique

Fig. 3: Top 6 Scanned TCP Ports - One Day Sample

scans (unique IP/port pairs). Moreover, Figure 3 illustrates the
top 6 scanned TCP ports. Scans towards those services could
indicate that they are vulnerable to exploits.

To elaborate on the results, we subsequently present an
analytical discussion on our technique’s false negatives and
false positives.

False Negatives: We fed the same dataset as an input to
Snort’s sfPortscan. We relied on the output as a baseline for our
comparison. Snort’s sfPortscan technique detected 3690 unique
scans. After a semi-automated analysis and comparison that
was based on the logged scanning traffic flows (i.e., source and
destination IP and port, protocol, and timestamp), we identified
that all the 4215 scans that our approach detected include
sfPortscan’s 3690 scans. Therefore, relative to this technique
and experimenting with this specific data set, we confirm that
our approach yielded no false negative.

False Positives: Our approach flags an attempt as a scan
whenever a connection is made to a host or service not
offered by the network. The following can exist as sources of
false positive: (1) User error and network misconfiguration;
the intent was not to perform a scan but rather to access
a legitimate service that have failed. Since there exists no
scientific way to judge the connection intention, we have
to classify those attempts as scans. (2) Backscattered traffic
[29] destined to the corporate network; such traffic commonly
refers to unsolicited traffic that is the result of responses to
denial of service attacks with spoofed source IP addresses.
To avoid this false positive, we can investigate such traffic
using the proposed method in [30], which uses flags in packet
headers, such as TCP SYN+ACK, RST, RST+ACK, and ACK,
to accomplish the filtering. (3) Attempts to newly available
services that were not part of the training period; to reduce
the occurrences of this, we can optimize the update threshold
of an ENF to include the new services.

Moreover, our approach can detect certain types of scans
that were not included at the time of the experiment, and by
default, in Snort’s sfPortscan definitions. These include scans
from a single host to a single port on a single host, slow scans
and a specific host scanning multiple ports on multiple hosts.
In general, we claim that a certain limited, acceptable and
a manageable number of false positives will occur. Although
future manual packet inspection needs to be performed to get
the exact number of false positives, we need as well to consider
Snort’s sfPortscan false negatives and the different types of

Scanning
Botmaster

Scanning Command &
Control Center

Benign Machines

Web Server

Bots A Bots B Bots C

Fig. 4: Evaluating Scenario

scans that our approach was able to detect.

B. Evaluating the statistical time series clustering approach

We now presume that the output of the previous proposed
technique generated real scans towards the corporate web
server. Hence, to evaluate the proposed DFA approach, which
aims at identifying and clustering the scanning machines, we
created in a lab environment a customized setup as illustrated
in Figure 4. The setup consists of a scanning command and
control server, six scanning machines, two benign/legitimate
machines and the corporate webserver. The scenario discloses
that a scanning botmaster operating the command and control
center has compromised the machines into his botnet and aims
to scan the webserver. At the same time, the webserver is still
servicing the requests of the legitimate machines.

We have setup a TCPDUMP [31] sink on the webserver to
collect the network traffic data originating from the bots and
the benign machines. To emulate the effect of the scanning
bots, we have utilized nmap [32], an open source utility for
network scanning and discovery. The bots, as shown in the
scenario of Figure 4, are divided into three groups, namely,
Bots A, B and C, where each group uses a certain scanning
technique. Bot groups A, B and C uses the TCP SYN scan
(nmap -sS), the UDP scan (nmap -sU) and FIN scan (nmap
-sF) respectively. Although typically, one botnet campaign
might utilize one scanning technique to perform its scan, we
thought it would be more representative and challenging if
we have a scenario with various scanning techniques. We can
think of the three different scanning techniques as if there
exist three different botnets or one botnet utilizing various
techniques. Regardless of the scenario, recall that the aim
is to correctly identify the compromised machines (i.e., the
scanning machines) from the non-compromised in addition to
clustering the bots that belong to the same botnet. In the case
of the non-compromised machines, we issued HTTP requests
using the wget command. Note that, the bots, the benign
machines and the webserver are configured as virtual machines
running Ubuntu Linux 11.04 where they are connected using
a LAN isolated from any external/Internet network activity.

After finalizing the aforementioned setup, we concurrently ran
the above procedure and collected the dataset in pcap format.

Using the source IPs of the bots and the legitimate
machines, we extracted their corresponding traffic from the
dataset that we had previously collected. The packets’ distribu-
tion of the scanning traffic generated by the three bot groups in
addition to the benign HTTP traffic generated by the legitimate
machines is illustrated in Figure 5.

To implement DFA, we have utilized the MATLAB code
found in [33]. The output of applying the DFA method on the
previous traffic time series distributions is shown in Figure 6
and the output of the scaling exponents α is summarized in
Table IV.

Traffic Type Scaling Exponent

TCP SYN Scanning 1.2
UDP Scanning 0.64
FIN Scanning 0.32
HTTP Traffic 0.95

TABLE IV: Summary of the scaling exponents α

The results concur our observation that scanning machines
that use the same technique to perform the scan will likely
demonstrate a unique temporal correlation and similarity. This
is indeed demonstrated in Table IV, where TCP SYN scanning
that was generated from Bots A, according to the DFA results,
showed that their traffic signals possessed a distinguished
fingerprint where the traffic is similar to a non-stationary signal
(α > 1). On the other hand, UDP scanning from Bots B
revealed that their signal’s traffic is correlated (α > 0.5) while
the signal’s traffic from the FIN scanning of Bots C showed
an anti-correlated signal (α < 0.5). Further, the benign HTTP
traffic that was generated from the legitimate machines was
similar to noise (α ≈ 1).

Fig. 6: The application of DFA on the scanning and benign
traffic

Having the above significant traffic fingerprinting infor-
mation, it is now straightforward to identify and cluster the
machines. For that purpose, we went back to our collected
dataset and extracted 8 traffic flows, where each flow is
identified by a source and a destination IP and port, and a
transport layer protocol (TCP, UDP, ICMP). For each traffic

(a) TCP SYN Scanning Traffic of Bots A (b) UDP Scanning Traffic of Bots B

(c) FIN Scanning Traffic of Bots C (d) HTTP Traffic of Benign Machines

Fig. 5: Packets’ Distribution generated by the three bot groups and the legitimate machines

flow, we applied the DFA method and then cross-matched it
with the correlation status information that we have in Table
IV. By accomplishing this, we showed that by only using the
traffic signals self similarity feature, our proposed technique’s
clustering mechanism is able to correctly identify and cluster
the scanning bots with high accuracy even in the presence of
legitimate traffic.

VI. CONCLUSION

This paper discussed an approach that is composed of
two techniques that respectively tackle the issues of de-
tecting corporate cyber scanning and clustering distributed
reconnaissance activity. First, the paper proposed a non-
attribution anomaly detection technique. Motivated by the
shortcomings of attribution-based approaches to cyber scan
detection, this technique presented an alternative view of the
problem/solution. The idea is to focus on what is being offered
by the network and hence on what is being scanned rather
than who is performing the scanning. To characterize this, we
introduced and elaborated on the notion of enterprise network
facade. To construct and maintain the ENF, we leveraged the
SNMP by presenting certain management procedures. The
approach’s training period is decoupled from any external
traffic which makes its implementation very operationally fea-
sible, in addition to having fast stabilization time yet requiring
minimalistic system state storage. The technique’s detection
period is attribution-independent, which allows the detection
of sophisticated reconnaissance activity, requires only a single
packet to detect a scan and allows the detection of both TCP
and UDP scans. To evaluate our technique, we experimented

using a real network traffic dataset and implemented a proof-
of-concept environment. The results demonstrated that for
a class C network with 250 active hosts and 5 monitored
servers, the proposed technique’s training period required a
stabilization time of less than 1 second and a state memory
of 80 bytes. Moreover, in comparison with Snort’s sfPortscan
technique, it was able to detect 4215 unique scans and yielded
zero false negative.
Second, the paper proposed a statistical time series clustering
Technique. This approach was motivated by the observation
that scanning machines that use the same technique to perform
the scan will likely demonstrate temporal correlation and
similarity. The idea is to capture such correlation in the
traffic’s signal, by utilizing the detrended fluctuation analysis
method. The aim is to correctly identify the scanning machines
from the legitimate machines in addition to clustering those
that utilize the same scanning technique. Using a customized
evaluation scenario and setup, we found out that different
scanning traffic originating from different bot groups exhibited
unique temporal correlation. Such uniqueness allowed the
successful identification and clustering of the bots and the
benign machines.
For future work, the next step would be to incorporate both
techniques into a coherent system and perform its validation.
Concerning the anomaly detection technique, we intend to
leverage it by building efficient and effective heuristics for
the detection of slow scans. On the other hand, concerning the
proposed statistical time series clustering technique, we intend
to experiment with real scanning botnet traffic in addition to
thoroughly validating it by comparing it with well established

methods such as machine learning classifiers.

REFERENCES

[1] Yoo Chung. Distributed denial of service is a scalability
problem. SIGCOMM Comput. Commun. Rev., 42(1):69–
71, January 2012.

[2] M.K. Daly. Advanced persistent threat. Usenix, Nov, 4,
2009.

[3] Leyla Bilge and Tudor Dumitras. Before we knew it: an
empirical study of zero-day attacks in the real world. In
Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, pages 833–844,
New York, NY, USA, 2012. ACM.

[4] Symantec. W32.Stuxnet Dossier, 2012. http://tinyurl.
com/36y7jzb; Last accessed: 25/10/2012.

[5] DefenseTech. Cyber War 2.0, Russia v. Georgia, 2012.
http://tinyurl.com/8l7cvm8; Last accessed: 25/10/2012.

[6] The Globe and Mail. Ottawa needs to improve cyber se-
curity: Auditor General, 2012. http://tinyurl.com/8n5sl7p;
Last accessed: 25/10/2012.

[7] W. Zhang, S. Teng, and X. Fu. Scan attack detection
based on distributed cooperative model. In Computer
Supported Cooperative Work in Design, 2008. CSCWD
2008. 12th International Conference on, pages 743–748.
IEEE, 2008.

[8] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita.
Aocd: An adaptive outlier based coordinated scan detec-
tion approach. International Journal of Network Security,
14(6):339–351, 2012.

[9] R. Baldoni, G. Di Luna, and L. Querzoni. Collabo-
rative Detection of Coordinated Port Scans. Technical
report, 2012. http://www.dis.uniroma1.it/∼midlab; Last
accessed: 27/10/2012.

[10] G. Conti and K. Abdullah. Passive visual fingerprinting
of network attack tools. In Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer
security, pages 45–54. ACM, 2004.

[11] J. Treurniet. A network activity classification schema and
its application to scan detection. Networking, IEEE/ACM
Transactions on, 19(5):1396–1404, 2011.

[12] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Prac-
tical automated detection of stealthy portscans. Journal
of Computer Security, 10(1/2):105–136, 2002.

[13] Internet Engineering Task Force (IETF). A Simple
Network Management Protocol (SNMP), 1990. http://
www.ietf.org/rfc/rfc1157.txt; Last accessed: 23/08/2012.

[14] William Stallings. SNMP,SNMPV2,Snmpv3,and RMON 1
and 2. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 3rd edition, 1998.

[15] Internet Engineering Task Force (IETF). SNMP Over-
head and Performance Impact, 2003. http://tools.ietf.
org/html/draft-breit-snmp-overhead-00; Last accessed:
3/09/2012.

[16] L. Andrey, O. Festor, A. Lahmadi, A. Pras, and
J. Schönwälder. Survey of snmp performance analysis
studies. International Journal of Network Management,
19(6):527–548, 2009.

[17] Claude Fachkha, Elias Bou-Harb, Amine Boukhtouta,
Son Dinh, Farkhund Iqbal, and Mourad Debbabi. Inves-
tigating the dark cyberspace: Profiling, threat-based anal-
ysis and correlation. 2012 7th International Conference

on Risks and Security of Internet and Systems (CRiSIS),
0:1–8, 2012.

[18] Symantec. Trojan Horse. http://www.
symantec.com/security response/writeup.jsp?docid=
2004-021914-2822-99; Last accessed: 1/10/2013.

[19] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E.
Stanley, and A. L. Goldberger. Mosaic organization of
dna nucleotides. Phys. Rev. E, 49:1685–1689, Feb 1994.

[20] U. Harder, M.W. Johnson, J.T. Bradley, and W.J. Knot-
tenbelt. Observing internet worm and virus attacks with a
small network telescope. Electronic Notes in Theoretical
Computer Science, 151(3):47–59, 2006.

[21] K. Fukuda, T. Hirotsu, O. Akashi, and T. Sugawara.
Correlation among piecewise unwanted traffic time series.
In Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

[22] M.B. Priestley. Spectral analysis and time series. 1981.
[23] J.A.O. Matos, S. Gama, H.J. Ruskin, A.A. Sharkasi, and

M. Crane. Time and scale hurst exponent analysis for
financial markets. Physica A: Statistical Mechanics and
its Applications, 387(15):3910–3915, 2008.

[24] K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, and H.E. Stan-
ley. Effect of trends on detrended fluctuation analysis.
Physical Review E, 64(1):011114, 2001.

[25] Eric Wustrow, Manish Karir, Michael Bailey, Farnam Ja-
hanian, and Geoff Huston. Internet background radiation
revisited. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, IMC ’10, pages 62–
74, New York, NY, USA, 2010. ACM.

[26] eMarkSof Inc. eMarksoft SNMP Component, 2002-
2012. http://www.emarksoft.com/mib-snmp-component.
htm; Last accessed: 6/09/2012.

[27] Daniel Roelker, Marc Norton and Jeremy Hewlett.
sfportscan, 2004. http://projects.cs.luc.edu/comp412/
dredd/docs/software/readmes/sfportscan; Last accessed:
21/08/2012.

[28] Snort. Available at: http://www.snort.org.
[29] D. Moore, G.M. Voelker, and S. Savage. Inferring

internet denial-of-service activity. Technical report, DTIC
Document, 2001.

[30] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and
G. Huston. Internet background radiation revisited. In
Proceedings of the 10th annual conference on Internet
measurement, pages 62–74. ACM, 2010.

[31] V. Jacobson, C. Leres, and S. McCanne. The tcpdump
manual page. Lawrence Berkeley Laboratory, Berkeley,
CA, 1989.

[32] G.F. Lyon. Nmap network scanning: The official nmap
project guide to network discovery and security scanning
author: Gordon fyodor l. 2009.

[33] M. Little, P. McSharry, I. Moroz, and S. Roberts. Non-
linear, biophysically-informed speech pathology detec-
tion. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings., volume 2, page II.

